1
|
Liu J, Xia Y, Xie Z, Li X, Huang G, Hu J, Zhou Z. Association of C1QTNF6 gene polymorphism with risk and clinical features of type 1 diabetes in Chinese: implications for ZnT8A and beta-cell function. Front Immunol 2025; 16:1551552. [PMID: 40270961 PMCID: PMC12014654 DOI: 10.3389/fimmu.2025.1551552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Genome-wide association study identified C1QTNF6 as a candidate gene for type 1 diabetes (T1D) in Caucasians. We aimed to investigate if rs229541 in C1QTNF6 conferred susceptibility to T1D in Chinese, independent of DR-DQ genotypes and if this gene polymorphism affected the clinical profiles of T1D. Methods In this case-control study, genotypes of C1QTNF6 rs229541 were obtained from 1278 patients with T1D and 1282 nondiabetic controls using MassARRAY. Results Genotypic (P = 0.0210) and allelic (P = 0.0084) frequencies were significantly different between the T1D group and the control group. When the model was adjusted for DR-DQ genotypes, G allele carriers were observed less often in the T1D group (P = 0.0423, OR 0.82, 95% CI 0.68-0.99) than in the control group, and the G allele was associated with reduced T1D risk(P = 0.0167, OR 0.83, 95% CI 0.71-0.97). T1D patients who were homozygous for the G allele showed a higher positive rate of ZnT8A than carriers of the A allele (P = 0.0171, OR 1.88, 95% CI 1.12-3.16). By detection of fasting C-peptide, G allele carriers exhibited a lower frequency of beta-cell failure compared to those with A/A genotype (P = 0.0058, OR 0.70, 95% CI 0.54-0.90). C1QTNF6 was not found to be correlated with GADA, IA-2A or age at T1D diagnosis. Discussion The polymorphism in C1QTNF6 was independently associated with T1D risk in Chinese and broadly modified clinical features of the disease. This loci might be utilized to construct genetic risk model in combination with the well-known DR-DQ region for future screening of genetically T1D prone individuals among Chinese.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingyi Hu
- *Correspondence: Zhiguang Zhou, ; Jingyi Hu,
| | | |
Collapse
|
2
|
Król-Kulikowska M, Urbanowicz I, Kepinska M. The Concentrations of Interleukin-6, Insulin, and Glucagon in the Context of Obesity and Type 2 Diabetes and Single Nucleotide Polymorphisms in IL6 and INS Genes. J Obes 2024; 2024:7529779. [PMID: 38250713 PMCID: PMC10798838 DOI: 10.1155/2024/7529779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Obesity and diabetes are a problem of modern medicine. Although the environmental factors contributing to the development of these diseases are widely known, research into genetic factors is still ongoing. At the same time, the role of inflammation in the pathophysiology of obesity and diabetes is increasingly emphasized. Therefore, the purpose of this study was to investigate the influence of two selected polymorphisms (rs1800795 and rs3842729) on the development of obesity and type 2 diabetes. In this study, 118 participants were examined, including a control group (nonobese and nondiabetic group), an obese group, and a diabetic group. Genotype analysis was performed using the PCR-RFLP method. It has been shown that in patients with the G/G genotype within the rs1800795 polymorphism (IL6), the chance of developing type 2 diabetes is several times lower compared to patients with the G/C and C/C genotypes. However, the rs3842729 polymorphism (INS) does not directly affect the risk of obesity or type 2 diabetes (T2D), although elevated insulin concentrations have been observed in obese and diabetic patients. These results confirm the impact of the rs1800795 polymorphism on the development of diabetes; however, this relationship is more complex and requires further research on other factors.
Collapse
Affiliation(s)
- Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Iwona Urbanowicz
- Department of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| |
Collapse
|
3
|
Pierre TH, Toren E, Kepple J, Hunter CS. Epigenetic Regulation of Pancreas Development and Function. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 239:1-30. [PMID: 39283480 DOI: 10.1007/978-3-031-62232-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The field of epigenetics broadly seeks to define heritable phenotypic modifications that occur within cells without changes to the underlying DNA sequence. These modifications allow for precise control and specificity of function between cell types-ultimately creating complex organ systems that all contain the same DNA but only have access to the genes and sequences necessary for their cell-type-specific functions. The pancreas is an organ that contains varied cellular compartments with functions ranging from highly regulated glucose-stimulated insulin secretion in the β-cell to the pancreatic ductal cells that form a tight epithelial lining for the delivery of digestive enzymes. With diabetes cases on the rise worldwide, understanding the epigenetic mechanisms driving β-cell identity, function, and even disease is particularly valuable. In this chapter, we will discuss the known epigenetic modifications in pancreatic islet cells, how they are deposited, and the environmental and metabolic contributions to epigenetic mechanisms. We will also explore how a deeper understanding of epigenetic effectors can be used as a tool for diabetes therapeutic strategies.
Collapse
Affiliation(s)
- Tanya Hans Pierre
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Kepple
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Pahkuri S, Ekman I, Vandamme C, Näntö-Salonen K, Toppari J, Veijola R, Knip M, Kinnunen T, Ilonen J, Lempainen J. DNA methylation differences within INS, PTPN22 and IL2RA promoters in lymphocyte subsets in children with type 1 diabetes and controls. Autoimmunity 2023; 56:2259118. [PMID: 37724526 DOI: 10.1080/08916934.2023.2259118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
We elucidated the effect of four known T1D-susceptibility associated single nucleotide polymorphism (SNP) markers in three genes (rs12722495 and rs2104286 in IL2RA, rs689 in INS and rs2476601 in PTPN22) on CpG site methylation of their proximal promoters in different lymphocyte subsets using pyrosequencing. The study cohort comprised 25 children with newly diagnosed T1D and 25 matched healthy controls. The rs689 SNP was associated with methylation at four CpG sites in INS promoter: -234, -206, -102 and -69. At all four CpG sites, the susceptibility genotype AA was associated with a higher methylation level compared to the other genotypes. We also found an association between rs12722495 and methylation at CpG sites -373 and -356 in IL2RA promoter in B cells, where the risk genotype AA was associated with lower methylation level compared to the AG genotype. The other SNPs analyzed did not demonstrate significant associations with CpG site methylation in the examined genes. Additionally, we compared the methylation between children with T1D and controls, and found statistically significant methylation differences at CpG -135 in INS in CD8+ T cells (p = 0.034), where T1D patients had a slightly higher methylation compared to controls (87.3 ± 7.2 vs. 78.8 ± 8.9). At the other CpG sites analyzed, the methylation was similar. Our results not only confirm the association between INS methylation and rs689 discovered in earlier studies but also report this association in sorted immune cells. We also report an association between rs12722495 and IL2RA promoter methylation in B cells. These results suggest that at least part of the genetic effect of rs689 and rs12722495 on T1D pathogenesis may be conveyed by DNA methylation.
Collapse
Affiliation(s)
- Sirpa Pahkuri
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilse Ekman
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Céline Vandamme
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsti Näntö-Salonen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Eastern Finland Laboratory Centre (ISLAB), Kuopio, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Lei L, Bai YH, Jiang HY, He T, Li M, Wang JP. A bioinformatics analysis of the contribution of m6A methylation to the occurrence of diabetes mellitus. Endocr Connect 2021; 10:1253-1265. [PMID: 34486983 PMCID: PMC8558884 DOI: 10.1530/ec-21-0328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022]
Abstract
N6-methyladenosine (m6A) methylation has been reported to play a role in type 2 diabetes (T2D). However, the key component of m6A methylation has not been well explored in T2D. This study investigates the biological role and the underlying mechanism of m6A methylation genes in T2D. The Gene Expression Omnibus (GEO) database combined with the m6A methylation and transcriptome data of T2D patients were used to identify m6A methylation differentially expressed genes (mMDEGs). Ingenuity pathway analysis (IPA) was used to predict T2D-related differentially expressed genes (DEGs). Gene ontology (GO) term enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to determine the biological functions of mMDEGs. Gene set enrichment analysis (GSEA) was performed to further confirm the functional enrichment of mMDEGs and determine candidate hub genes. The least absolute shrinkage and selection operator (LASSO) regression analysis was carried out to screen for the best predictors of T2D, and RT-PCR and Western blot were used to verify the expression of the predictors. A total of 194 overlapping mMDEGs were detected. GO, KEGG, and GSEA analysis showed that mMDEGs were enriched in T2D and insulin signaling pathways, where the insulin gene (INS), the type 2 membranal glycoprotein gene (MAFA), and hexokinase 2 (HK2) gene were found. The LASSO regression analysis of candidate hub genes showed that the INS gene could be invoked as a predictive hub gene for T2D. INS, MAFA,and HK2 genes participate in the T2D disease process, but INS can better predict the occurrence of T2D.
Collapse
Affiliation(s)
- Lei Lei
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Yi-Hua Bai
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
- Correspondence should be addressed to Y-H Bai:
| | - Hong-Ying Jiang
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Ting He
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Meng Li
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Jia-Ping Wang
- Department of Radiology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Epigenetic Changes Induced by Maternal Factors during Fetal Life: Implication for Type 1 Diabetes. Genes (Basel) 2021; 12:genes12060887. [PMID: 34201206 PMCID: PMC8227197 DOI: 10.3390/genes12060887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Organ-specific autoimmune diseases, such as type 1 diabetes, are believed to result from T-cell-mediated damage of the target tissue. The immune-mediated tissue injury, in turn, is known to depend on complex interactions between genetic and environmental factors. Nevertheless, the mechanisms whereby environmental factors contribute to the pathogenesis of autoimmune diseases remain elusive and represent a major untapped target to develop novel strategies for disease prevention. Given the impact of the early environment on the developing immune system, epigenetic changes induced by maternal factors during fetal life have been linked to a likelihood of developing an autoimmune disease later in life. In humans, DNA methylation is the epigenetic mechanism most extensively investigated. This review provides an overview of the critical role of DNA methylation changes induced by prenatal maternal conditions contributing to the increased risk of immune-mediated diseases on the offspring, with a particular focus on T1D. A deeper understanding of epigenetic alterations induced by environmental stressors during fetal life may be pivotal for developing targeted prevention strategies of type 1 diabetes by modifying the maternal environment.
Collapse
|
7
|
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that resulted from the severe destruction of the insulin-producing β cells in the pancreases of individuals with a genetic predisposition. Genome-wide studies have identified HLA and other risk genes associated with T1D susceptibility in humans. However, evidence obtained from the incomplete concordance of diabetes incidence among monozygotic twins suggests that environmental factors also play critical roles in T1D pathogenesis. Epigenetics is a rapidly growing field that serves as a bridge to link T1D risk genes and environmental exposures, thereby modulating the expression of critical genes relevant to T1D development beyond the changes of DNA sequences. Indeed, there is compelling evidence that epigenetic changes induced by environmental insults are implicated in T1D pathogenesis. Herein, we sought to summarize the recent progress in terms of epigenetic mechanisms in T1D initiation and progression, and discuss their potential as biomarkers and therapeutic targets in the T1D setting.
Collapse
|