1
|
Freckmann G, Eichenlaub M, Waldenmaier D, Pleus S, Wehrstedt S, Haug C, Witthauer L, Jendle J, Hinzmann R, Thomas A, Eriksson Boija E, Makris K, Diem P, Tran N, Klonoff DC, Nichols JH, Slingerland RJ. Clinical Performance Evaluation of Continuous Glucose Monitoring Systems: A Scoping Review and Recommendations for Reporting. J Diabetes Sci Technol 2023; 17:1506-1526. [PMID: 37599389 PMCID: PMC10658695 DOI: 10.1177/19322968231190941] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The use of different approaches for design and results presentation of studies for the clinical performance evaluation of continuous glucose monitoring (CGM) systems has long been recognized as a major challenge in comparing their results. However, a comprehensive characterization of the variability in study designs is currently unavailable. This article presents a scoping review of clinical CGM performance evaluations published between 2002 and 2022. Specifically, this review quantifies the prevalence of numerous options associated with various aspects of study design, including subject population, comparator (reference) method selection, testing procedures, and statistical accuracy evaluation. We found that there is a large variability in nearly all of those aspects and, in particular, in the characteristics of the comparator measurements. Furthermore, these characteristics as well as other crucial aspects of study design are often not reported in sufficient detail to allow an informed interpretation of study results. We therefore provide recommendations for reporting the general study design, CGM system use, comparator measurement approach, testing procedures, and data analysis/statistical performance evaluation. Additionally, this review aims to serve as a foundation for the development of a standardized CGM performance evaluation procedure, thereby supporting the goals and objectives of the Working Group on CGM established by the Scientific Division of the International Federation of Clinical Chemistry and Laboratory Medicine.
Collapse
Affiliation(s)
- Guido Freckmann
- IFCC Scientific Division - Working Group on Continuous Glucose Monitoring
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | - Manuel Eichenlaub
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | - Delia Waldenmaier
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | - Stefan Pleus
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | - Stephanie Wehrstedt
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | - Cornelia Haug
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | - Lilian Witthauer
- Diabetes Center Berne, Bern, Switzerland
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital Bern, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Johan Jendle
- IFCC Scientific Division - Working Group on Continuous Glucose Monitoring
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Rolf Hinzmann
- IFCC Scientific Division - Working Group on Continuous Glucose Monitoring
- Roche Diabetes Care GmbH, Mannheim, Germany
| | - Andreas Thomas
- IFCC Scientific Division - Working Group on Continuous Glucose Monitoring
- Pirna, Germany
| | - Elisabet Eriksson Boija
- IFCC Scientific Division - Working Group on Continuous Glucose Monitoring
- Equalis AB, Uppsala, Sweden
| | - Konstantinos Makris
- IFCC Scientific Division - Working Group on Continuous Glucose Monitoring
- Clinical Biochemistry Department, KAT General Hospital, Athens, Greece
| | - Peter Diem
- IFCC Scientific Division - Working Group on Continuous Glucose Monitoring
- Endokrinologie Diabetologie Bern, Bern, Switzerland
| | - Nam Tran
- IFCC Scientific Division - Working Group on Continuous Glucose Monitoring
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, USA
| | - David C. Klonoff
- IFCC Scientific Division - Working Group on Continuous Glucose Monitoring
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| | - James H. Nichols
- IFCC Scientific Division - Working Group on Continuous Glucose Monitoring
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robbert J. Slingerland
- IFCC Scientific Division - Working Group on Continuous Glucose Monitoring
- Department of Clinical Chemistry, Isala Clinics, Zwolle, the Netherlands
| |
Collapse
|
2
|
Jin Z, Thackray AE, King JA, Deighton K, Davies MJ, Stensel DJ. Analytical Performance of the Factory-Calibrated Flash Glucose Monitoring System FreeStyle Libre2 TM in Healthy Women. SENSORS (BASEL, SWITZERLAND) 2023; 23:7417. [PMID: 37687871 PMCID: PMC10490447 DOI: 10.3390/s23177417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Continuous glucose monitoring (CGM) is used clinically and for research purposes to capture glycaemic profiles. The accuracy of CGM among healthy populations has not been widely assessed. This study assessed agreement between glucose concentrations obtained from venous plasma and from CGM (FreeStyle Libre2TM, Abbott Diabetes Care, Witney, UK) in healthy women. Glucose concentrations were assessed after fasting and every 15 min after a standardized breakfast over a 4-h lab period. Accuracy of CGM was determined by Bland-Altman plot, 15/15% sensor agreement analysis, Clarke error grid analysis (EGA) and mean absolute relative difference (MARD). In all, 429 valid CGM readings with paired venous plasma glucose (VPG) values were obtained from 29 healthy women. Mean CGM readings were 1.14 mmol/L (95% CI: 0.97 to 1.30 mmol/L, p < 0.001) higher than VPG concentrations. Ratio 95% limits of agreement were from 0.68 to 2.20, and a proportional bias (slope: 0.22) was reported. Additionally, 45% of the CGM readings were within ±0.83 mmol/L (±15 mg/dL) or ±15% of VPG, while 85.3% were within EGA Zones A + B (clinically acceptable). MARD was 27.5% (95% CI: 20.8, 34.2%), with higher MARD values in the hypoglycaemia range and when VPG concentrations were falling. The FreeStyle Libre2TM CGM system tends to overestimate glucose concentrations compared to venous plasma samples in healthy women, especially during hypoglycaemia and during glycaemic swings.
Collapse
Affiliation(s)
- Zhuoxiu Jin
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (Z.J.); (A.E.T.); (J.A.K.)
| | - Alice E. Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (Z.J.); (A.E.T.); (J.A.K.)
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester LE1 5WW, UK;
| | - James A. King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (Z.J.); (A.E.T.); (J.A.K.)
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester LE1 5WW, UK;
| | | | - Melanie J. Davies
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester LE1 5WW, UK;
- Diabetes Research Centre, University of Leicester, Leicester LE5 4PW, UK
| | - David J. Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (Z.J.); (A.E.T.); (J.A.K.)
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester National Health Service (NHS) Trust and the University of Leicester, Leicester LE1 5WW, UK;
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong 999077, China
| |
Collapse
|
3
|
Li Y, Cao B, Chen Q, Du M, Yan M, Chen Y, Wei H, Wu X, Cui Y, Liu F. Application of the FreeStyle®Libre Glucose Monitoring System in type 1 diabetes mellitus patients aged 1-4 years. Pediatr Diabetes 2022; 23:604-610. [PMID: 35644029 DOI: 10.1111/pedi.13368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/01/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To investigate the analytical accuracy, safety performance, and user satisfaction (guardians of study participants) of the FreeStyle®Libre Glucose Monitoring System in the treatment of type 1 diabetes mellitus (T1DM), in children aged <4 years. METHODS Sixteen hospitalized children with new onset T1DM, aged 4 months to 4 years, were enrolled in this study. Patients wore the sensor for 14 days; sensor scans were performed immediately and at 5, 10, and 15 min after capillary blood glucose (BG) measurements to evaluate the effectiveness of the device and the lag effect. RESULTS The consensus error grid showed that 96.40% of values fell within zone A (no clinical impact) and 3.60% within zone B (little/no clinical impact). Overall, the mean absolute relative difference (MARD) was 9.34%, and was higher in the capillary BG <4.0 mmol/L group (15.18%) than in the 4-10 mmol/L (9.63%) and >10 mmol/L (7.17%) groups. The MARD increased gradually with scanning time extension, indicating a short lag effect. Regression analysis showed that a higher BG level was associated with a greater difference in FreeStyle®Libre System measurements. CONCLUSIONS The use of the FreeStyle®Libre System in children aged 1-4 years is accurate and safe, and may be accurate down to 4 months, independent of patient characteristics.
Collapse
Affiliation(s)
- Yangshiyu Li
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Bingyan Cao
- Department of Endocrinology, Genetic and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qiong Chen
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Mengmeng Du
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Mingming Yan
- Department of Statistics and Epidemiology, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yongxing Chen
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Haiyan Wei
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xue Wu
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yan Cui
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Pleus S, Stuhr A, Link M, Schauer S, Freckmann G. Response to Seibold: Data Obtained With Early Generations of CGM Sensors: Comment on Pleus et al. J Diabetes Sci Technol 2022; 16:794-795. [PMID: 34344227 PMCID: PMC9294559 DOI: 10.1177/19322968211037299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Stefan Pleus
- Institut für Diabetes-Technologie,
Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | | | - Manuela Link
- Institut für Diabetes-Technologie,
Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | - Sebastian Schauer
- Institut für Diabetes-Technologie,
Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | - Guido Freckmann
- Institut für Diabetes-Technologie,
Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| |
Collapse
|
5
|
Moser O, Sternad C, Eckstein ML, Szadkowska A, Michalak A, Mader JK, Ziko H, Elsayed H, Aberer F, Sola-Gazagnes A, Larger E, Fadini GP, Bonora BM, Bruttomesso D, Boscari F, Freckmann G, Pleus S, Christiansen SC, Sourij H. Performance of intermittently scanned continuous glucose monitoring systems in people with type 1 diabetes: A pooled analysis. Diabetes Obes Metab 2022; 24:522-529. [PMID: 34866293 DOI: 10.1111/dom.14609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
AIMS To conduct a pooled analysis to assess the performance of intermittently scanned continuous glucose monitoring (isCGM) in association with the rate of change in sensor glucose in a cohort of children, adolescents, and adults with type 1 diabetes. MATERIAL AND METHODS In this pooled analysis, isCGM system accuracy was assessed depending on the rate of change in sensor glucose. Clinical studies that have been investigating isCGM accuracy against blood glucose, accompanied with collection time points were included in this analysis. isCGM performance was assessed by means of median absolute relative difference (MedARD), Parkes error grid (PEG) and Bland-Altman plot analyses. RESULTS Twelve studies comprising 311 participants were included, with a total of 15 837 paired measurements. The overall MedARD (interquartile range) was 12.7% (5.9-23.5) and MedARD differed significantly based on the rate of change in glucose (P < 0.001). An absolute difference of -22 mg/dL (-1.2 mmol/L) (95% limits of agreement [LoA] 60 mg/dL (3.3 mmol/L), -103 mg/dL (-5.7 mmol/L)) was found when glucose was rapidly increasing (isCGM glucose minus reference blood glucose), while a -32 mg/dL (1.8 mmol/L) (95% LoA 116 mg/dL (6.4 mmol/L), -51 mg/dL (-2.8 mmol/L)) absolute difference was observed in periods of rapidly decreasing glucose. CONCLUSIONS The performance of isCGM was good when compared to reference blood glucose measurements. The rate of change in glucose for both increasing and decreasing glucose levels diminished isCGM performance, showing lower accuracy during high rates of glucose change.
Collapse
Affiliation(s)
- Othmar Moser
- Division of Exercise Physiology and Metabolism, Institute of Sport Science, University of Bayreuth, Bayreuth, Germany
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz
| | - Christoph Sternad
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz
| | - Max L Eckstein
- Division of Exercise Physiology and Metabolism, Institute of Sport Science, University of Bayreuth, Bayreuth, Germany
| | - Agnieszka Szadkowska
- Department of Pediatrics, Diabetology, Endocrinology & Nephrology, Medical University of Lodz, Łódź, Poland
| | - Arkadiusz Michalak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Łódź, Poland
| | - Julia K Mader
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Haris Ziko
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Hesham Elsayed
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Felix Aberer
- Division of Exercise Physiology and Metabolism, Institute of Sport Science, University of Bayreuth, Bayreuth, Germany
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz
| | - Agnes Sola-Gazagnes
- Department of Diabetology, Cochin Hospital, APHP Centre-Université de Paris, Paris, France
| | - Etienne Larger
- Department of Diabetology, Cochin Hospital, APHP Centre-Université de Paris, Paris, France
- Université de Paris, Paris, France
| | | | | | | | | | - Guido Freckmann
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | - Stefan Pleus
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | - Sverre C Christiansen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, St. Olav's University Hospital, Trondheim, Norway
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz
| |
Collapse
|
6
|
Lindner N, Kuwabara A, Holt T. Non-invasive and minimally invasive glucose monitoring devices: a systematic review and meta-analysis on diagnostic accuracy of hypoglycaemia detection. Syst Rev 2021; 10:145. [PMID: 33971958 PMCID: PMC8111899 DOI: 10.1186/s13643-021-01644-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The use of minimally and non-invasive monitoring systems (including continuous glucose monitoring) has increased rapidly over recent years. Up to now, it remains unclear how accurate devices can detect hypoglycaemic episodes. In this systematic review and meta-analysis, we assessed the diagnostic accuracy of minimally and non-invasive hypoglycaemia detection in comparison to capillary or venous blood glucose in patients with type 1 or type 2 diabetes. METHODS Clinical Trials.gov, Cochrane Library, Embase, PubMed, ProQuest, Scopus and Web of Science were systematically searched. Two authors independently screened the articles, extracted data using a standardised extraction form and assessed methodological quality using a review-tailored quality assessment tool for diagnostic accuracy studies (QUADAS-2). The diagnostic accuracy of hypoglycaemia detection was analysed via meta-analysis using a bivariate random effects model and meta-regression with regard to pre-specified covariates. RESULTS We identified 3416 nonduplicate articles. Finally, 15 studies with a total of 733 patients were included. Different thresholds for hypoglycaemia detection ranging from 40 to 100 mg/dl were used. Pooled analysis revealed a mean sensitivity of 69.3% [95% CI: 56.8 to 79.4] and a mean specificity of 93.3% [95% CI: 88.2 to 96.3]. Meta-regression analyses showed a better hypoglycaemia detection in studies indicating a higher overall accuracy, whereas year of publication did not significantly influence diagnostic accuracy. An additional analysis shows the absence of evidence for a better performance of the most recent generation of devices. CONCLUSION Overall, the present data suggest that minimally and non-invasive monitoring systems are not sufficiently accurate for detecting hypoglycaemia in routine use. SYSTEMATIC REVIEW REGISTRATION PROSPERO 2018 CRD42018104812.
Collapse
Affiliation(s)
- Nicole Lindner
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK. .,Department of Family Medicine, University of Marburg, Karl-von Frisch-Straße 4, 35043, Marburg, Germany.
| | - Aya Kuwabara
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| | - Tim Holt
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|