1
|
Chu C, Yan Y, Ma J, Jin S, Spinney R, Dionysiou DD, Zhang H, Xiao R. Implementation of laser flash photolysis for radical-induced reactions and environmental implications. WATER RESEARCH 2023; 244:120526. [PMID: 37672949 DOI: 10.1016/j.watres.2023.120526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Confronted with the imperative crisis of water quality deterioration, the pursuit of state-of-the-art decontamination technologies for a sustainable future never stops. Fitting into the framework of suitability, advanced oxidation processes have been demonstrated as powerful technologies to produce highly reactive radicals for the degradation of toxic and refractory contaminants. Therefore, investigations on their radical-induced degradation have been the subject of scientistic and engineering interests for decades. To better understand the transient nature of these radical species and rapid degradation processes, laser flash photolysis (LFP) has been considered as a viable and powerful technique due to its high temporal resolution and rapid response. Although a number of studies exploited LFP for one (or one class of) specific reaction(s), reactions of many possible contaminants with radicals are largely unknown. Therefore, there is a pressing need to critically review its implementation for kinetic quantification and mechanism elucidation. Within this context, we introduce the development process and milestones of LFP with emphasis on compositions and operation principles. We then compare the specificity and suitability of different spectral modes for monitoring radicals and their decay kinetics. Radicals with high environmental relevance, namely hydroxyl radical, sulfate radical, and reactive chlorine species, are selected, and we discuss their generation, detection, and implications within the frame of LFP. Finally, we highlight remaining challenges and future perspectives. This review aims to advance our understandings of the implementation of LFP in radical-induced transient processes, and yield new insights for extrapolating this pump-probe technique to make significant strides in environmental implications.
Collapse
Affiliation(s)
- Chu Chu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Junye Ma
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Richard Spinney
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio, 45221, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Haijun Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
2
|
Juan L, Diandian W, Jianfeng W, Ning L, Yuchen F, Na L, Sijie Z, Kun L, Fengyuan S. Efficient Anticancer Effect on Choroidal Melanoma Cells Induced by Tanshinone IIA Photosensitization. Photochem Photobiol 2021; 97:841-850. [PMID: 33580504 DOI: 10.1111/php.13399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/09/2021] [Indexed: 01/24/2023]
Abstract
Tanshinone IIA (TanIIA) has multiple biological functions and already been clinically used to treat many cardiovascular diseases. TanIIA is a photoactive molecule and can be excited by light to generate 3 TanIIA*. Generation of 3 TanIIA* by TanIIA photosensitization indicates that TanIIA may serve as a photosensitizer to bring photodynamic damage to organisms. Therefore, human choroidal melanoma MUM-2B cell was chosen as a superficial tumor model and the photodynamic effect of TanIIA on tumor cells was evaluated in this study. The results showed that TanIIA photosensitization could generate singlet oxygen in noncellular system. MTT, clone formation and wound-healing assays showed that the survival and migration of MUM-2B cells could be efficiently inhibited by TanIIA photosensitization. And then, laser confocal microscope and flow cytometry were used to try to elucidate related mechanism. It was found that TanIIA could pass through cellular membrane and preferably accumulate in nucleus. TanIIA photosensitization could efficiently induce cell apoptosis and necrosis, increase intracellular ROS levels, decrease mitochondria membrane potential, and lead to cell cycle arrest in G2/M phase. Our findings indicate that TanIIA photosensitization can exert remarkable toxicity on choroidal melanoma cells.
Collapse
Affiliation(s)
- Li Juan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.,Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Wei Diandian
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Wang Jianfeng
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Li Ning
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fan Yuchen
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Li Na
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zhao Sijie
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Li Kun
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Sun Fengyuan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
3
|
Zhang C, Jiang S, Li K, Wang M, Zhu R, Sun X, Wang Q, Wang S. The triplet state of tanshinone I and its synergic effect on the phototherapy of cancer cells with curcumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:181-186. [PMID: 26046496 DOI: 10.1016/j.saa.2015.05.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/06/2015] [Accepted: 05/09/2015] [Indexed: 06/04/2023]
Abstract
The excited triplet state of tanshinone I (Tan I) extracted from the traditional Chinese medicine Salvia miltiorrhiza Bunge was characterized by laser flash photolysis. The synergic effect of Tan I on the phototherapy of cancer cells with curcumin (Cur) was also investigated by MTT assay because the excited energy transfer from the triplet state of Tan I ((3)Tan I(∗)) to Cur occurred. At the same time, the characteristic absorption spectra of (3)Tan I(∗) were recorded, and its molar absorption coefficient and rate constants for several excited energy transfers were obtained. The photo-therapeutic effect of Cur is enhanced by combination with Tan I.
Collapse
Affiliation(s)
- Chenchen Zhang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Shan Jiang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Kun Li
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Mei Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Rongrong Zhu
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China; Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, China
| | - Xiaoyu Sun
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Qingxiu Wang
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, China.
| | - ShiLong Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China; Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|