1
|
Wang W, Chen Y, Wang Y, Wang Y, Zhang W, Dai K, Geng W, Tang S. Azo-linked 5-ASA-coumarin prodrug: Fluorescent tracking for colonic drug release in UC treatment. Talanta 2025; 284:127277. [PMID: 39608145 DOI: 10.1016/j.talanta.2024.127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Theranostic prodrugs that enable real-time, non-invasive monitoring of drug release and biodistribution are highly desirable for optimizing therapeutic efficacy and guiding personalized medication. Herein, we report a colon-targeted theranostic prodrug system (P1) for the simultaneous delivery and tracking of 5-aminosalicylic acid (5-ASA) in the treatment of ulcerative colitis (UC). P1 comprises a fluorescent 7-amino-4-methylcoumarin (7-AMC) reporter covalently linked to 5-ASA via an azo bond, which quenches the fluorescence of 7-AMC until P1 is activated by azoreductases in the colonic microenvironment. This selective activation triggers the release of 5-ASA and the revival of 7-AMC fluorescence, enabling real-time monitoring of drug delivery. To improve the solubility and targeted delivery of P1, it was encapsulated within polymeric micelles (PM) that selectively adhere to the positively charged, inflamed colonic tissues. In vitro studies confirmed the stability, biocompatibility, and selective activation of P1 under simulated colonic conditions. Notably, in a mouse model of UC, the P1-loaded PM achieved targeted delivery of 5-ASA to the inflamed colon, resulting in effective attenuation of colitis symptoms. Importantly, the in situ activation of P1 allowed for the real-time, non-invasive visualization of drug release and biodistribution, providing valuable insights for treatment optimization. This theranostic prodrug approach offers a promising strategy for the simultaneous therapy and tracking of 5-ASA delivery in UC treatment, with the potential to facilitate personalized medication and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Wenchao Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China
| | - Yingjie Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; University of Chinese Academy of Sciences, Wenzhou Institute, Zhejiang, China
| | - Yuan Wang
- University of Chinese Academy of Sciences, Wenzhou Institute, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yijian Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China
| | - Wenjing Zhang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China
| | - Keke Dai
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China
| | - Wujun Geng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China.
| | - Sicheng Tang
- University of Chinese Academy of Sciences, Wenzhou Institute, Zhejiang, China.
| |
Collapse
|
2
|
Schubert N, Southwell JW, Vázquez-Hernández M, Wortmann S, Schloeglmann S, Duhme-Klair AK, Nuernberger P, Bandow JE, Metzler-Nolte N. Fluorescent probes for investigating the internalisation and action of bioorthogonal ruthenium catalysts within Gram-positive bacteria. RSC Chem Biol 2024:d4cb00187g. [PMID: 39421717 PMCID: PMC11477652 DOI: 10.1039/d4cb00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Bioorthogonal reactions are extremely useful for the chemical modification of biomolecules, and are already well studied in mammalian cells. In contrast, very little attention has been given to the feasibility of such reactions in bacteria. Herein we report modified coumarin dyes for monitoring the internalisation and activity of bioorthogonal catalysts in the Gram-positive bacterial species Bacillus subtilis. Two fluorophores based on 7-aminocoumarin were synthesised and characterised to establish their luminescence properties. The introduction of an allyl carbamate (R2N-COOR') group onto the nitrogen atom of two 7-aminocoumarin derivatives with different solubility led to decreased fluorescence emission intensities and remarkable blue-shifts of the emission maxima. Importantly, this allyl carbamate group could be uncaged by the bioorthogonal, organometallic ruthenium catalyst investigated in this work, to yield the fluorescent product under biologically-relevant conditions. The internalisation of this catalyst was confirmed and quantified by ICP-OES analysis. Investigation of the bacterial cytoplasm and extracellular fractions separately, following incubation of the bacteria with the two caged dyes, facilitated their localisation, as well as that of their uncaged form by catalyst addition. In fact, significant differences were observed, as only the more lipophilic dye was located inside the cells and importantly remained there, seemingly avoiding efflux mechanisms. However, the uncaged form of this dye is not retained, and was found predominantly in the extracellular space. Finally, a range of siderophore-conjugated derivatives of the catalyst were investigated for the same transformations. Even though uptake was observed, albeit less significant than for the non-conjugated version, the fact that similar intracellular reaction rates were observed regardless of the iron content of the medium supports the notion that their uptake is independent of the iron transporters utilised by Gram-positive Bacillus subtilis cells.
Collapse
Affiliation(s)
- Nicole Schubert
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - James W Southwell
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - Melissa Vázquez-Hernández
- Faculty of Biology and Biotechnology, Applied Microbiology, Ruhr University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Svenja Wortmann
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Sylvia Schloeglmann
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | | | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Julia E Bandow
- Faculty of Biology and Biotechnology, Applied Microbiology, Ruhr University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
3
|
Wei Z, Philip AM, Jager WF, Grozema FC. Fast Charge Separation in Distant Donor-Acceptor Dyads Driven by Relaxation of a Hot Excited State. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:19250-19261. [PMID: 36424999 PMCID: PMC9677426 DOI: 10.1021/acs.jpcc.2c05754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A series of three perylenemonoimide-p-oligophenylene-dimethylaniline molecular dyads undergo photoinduced charge separation (CS) with anomalous distance dependence as a function of increasing donor-acceptor (DA) distances. A comprehensive experimental and computational investigation of the photodynamics in the donor-bridge-acceptor (DBA) chromophores reveals a clear demarcation concerning the nature of the CS accessed at shorter (bridgeless) and longer DA distances. At the shortest distance, a strong DA interaction and ground-state charge delocalization populate a hot excited state (ES) with prominent charge transfer (CT) character, via Franck-Condon vertical excitation. The presence of such a CT-polarized hot ES enables a subpicosecond CS in the bridgeless dyad. The incorporation of the p-oligophenylene bridge effectively decouples the donor and the acceptor units in the ground state and consequentially suppresses the CT polarization in the hot ES. Theoretically, this should render a slower CS at longer distances. However, the transient absorption measurement reveals a fast CS process at the longer distance, contrary to the anticipated exponential distance dependence of the CS rates. A closer look into the excited-state dynamics suggests that the hot ES undergoes ultrafast geometry relaxation (τ < 1 ps) to create a relaxed ES. As compared to a decoupled, twisted geometry in the hot ES, the geometry of the relaxed ES exhibits a more planar conformation of the p-oligophenylene bridges. Planarization of the bridge endorses an increased charge delocalization and a prominent CT character in the relaxed ES and forms the origin for the evident fast CS at the longest distance. Thus, the relaxation of the hot ES and the concomitantly enhanced charge delocalization adds a new caveat to the classic nature of distance-dependent CS in artificial DBA chromophores and recommends a cautious treatment of the attenuation factor (β) while discussing anomalous CS trends.
Collapse
|
4
|
Nath S, Bhattacharya B, Sarkar U, Singh TS. Solvent Effects on the Photophysical Properties of a Donor-acceptor Based Schiff Base. J Fluoresc 2022; 32:1321-1336. [PMID: 35366165 DOI: 10.1007/s10895-022-02905-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/13/2022] [Indexed: 11/24/2022]
Abstract
In this work, a donor-acceptor substituted aromatic system ((E)-N-((E)-3-(4 (dimethylamino)phenyl) allylidene)-4-(trifluoromethyl) benzenamine (DPATB) has been synthesized and its detailed photophysics of intramolecular charge transfer process have been explored on the basis of steady state absorption, fluorescence and time resolved spectroscopy in combination with density functional theory calculations. Large solvent dependency fluorescence spectral shift and the calculated large excited state dipole moment clearly indicate an efficient charge transfer occurring from the donor group to the acceptor moiety in the excited state. Effect on addition of acid and pH on steady state spectral properties further reveals excited state charge transfer character. Quantum chemical calculations were performed in order to study the conformation and polarity of DPATB at their ground as well as excited electronic states. The HOMO and LUMO molecular orbital pictures are obtained at DFT level using B3LYP functional and 6-311 + g(d,p) basis set which clearly support excited state intramolecular charge transfer process. The molecular electrostatic potential maps for the optimized ground state, donor twisted and acceptor twisted geometry shed insight on the electrostatic potential and charge distribution in a system which gives information about the reacting site of the probe and nature of the reaction. In this work, detailed photophysics of excited state intramolecular charge transfer process in donor-acceptor system (DPATB) was evaluated using steady state and time-resolved fluorescence spectroscopy in combination with density functional theory calculations. Large solvent dependency fluorescence spectral shift and the calculated large excited state dipole moment clearly indicate an efficient charge transfer occurring in DPATB. Molecular orbital pictures as obtained from DFT based computational analysis reveals a significant change in the distribution of electron density upon transition from HOMO to LUMO which confirms an ICT process occurring from the donor group to the acceptor moiety in the excited state.
Collapse
Affiliation(s)
- Surjatapa Nath
- Department of Chemistry, Assam University, Silchar, Assam, India
| | | | - Utpal Sarkar
- Department of Physics, Assam University, Silchar, India
| | - T Sanjoy Singh
- Department of Chemistry, Assam University, Silchar, Assam, India.
| |
Collapse
|
5
|
Rietsch P, Sobottka S, Hoffmann K, Popov AA, Hildebrandt P, Sarkar B, Resch‐Genger U, Eigler S. Between Aromatic and Quinoid Structure: A Symmetrical UV to Vis/NIR Benzothiadiazole Redox Switch. Chemistry 2020; 26:17361-17365. [PMID: 32997430 PMCID: PMC7839704 DOI: 10.1002/chem.202004009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Indexed: 02/03/2023]
Abstract
Reversibly switching the light absorption of organic molecules by redox processes is of interest for applications in sensors, light harvesting, smart materials, and medical diagnostics. This work presents a symmetrical benzothiadiazole (BTD) derivative with a high fluorescence quantum yield in solution and in the crystalline state and shows by spectroelectrochemical analysis that reversible switching of UV absorption in the neutral state, to broadband Vis/NIR absorption in the 1st oxidized state, to sharp band Vis absorption in the 2nd oxidized state, is possible. For the one-electron oxidized species, formation of a delocalized radical is confirmed by electron paramagnetic resonance spectroelectrochemistry. Furthermore, our results reveal an increasing quinoidal distortion upon the 1st and 2nd oxidation, which can be used as the leitmotif for the development of BTD based redox switches.
Collapse
Affiliation(s)
- Philipp Rietsch
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Sebastian Sobottka
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| | - Katrin Hoffmann
- Department 1, Division BiophotonicsBundesanstalt für Materialforschung und -prüfung (BAM)Richard Willstätter Straße 1112489BerlinGermany
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials ResearchHelmholtzstraße 2001069DresdenGermany
| | - Pascal Hildebrandt
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Biprajit Sarkar
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstraße 34–3614195BerlinGermany
- Chair of Inorganic Coordination ChemistryInstitute of Inorganic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Ute Resch‐Genger
- Department 1, Division BiophotonicsBundesanstalt für Materialforschung und -prüfung (BAM)Richard Willstätter Straße 1112489BerlinGermany
| | - Siegfried Eigler
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| |
Collapse
|
6
|
Sakti AS, Saputri FC, Mun'im A. Optimization of choline chloride-glycerol based natural deep eutectic solvent for extraction bioactive substances from Cinnamomum burmannii barks and Caesalpinia sappan heartwoods. Heliyon 2019; 5:e02915. [PMID: 31872114 PMCID: PMC6909081 DOI: 10.1016/j.heliyon.2019.e02915] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/20/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022] Open
Abstract
Indonesian cassia (Cinnamomum burmannii Blume) is commonly used as a condiment. It reportedly contains a number of major phytochemical constituents such as trans-cinnamaldehyde and coumarin. Sappan wood (Caesalpinia sappan) is a native plant of Southeast Asia that contains brazilin, a widely known red pigment. This study aimed to determine the optimal extraction conditions using a choline chloride-glycerol (ChCl-glycerol)-based natural deep eutectic solvent (NADES) to obtain greater trans-cinnamaldehyde and brazilin levels from Indonesian cassia and sappan wood. The powders of Indonesian cassia and sappan wood were extracted using ChCl-glycerol-based NADES varied at three different levels: ratio of ChCl to glycerol, ratio of powder to NADES, and the amount of water in NADES. All variables were designed using the Box-Behnken design of response surface methodology to provide 15 extraction conditions. The extraction was performed using ultrasonication-assisted extraction for 30 and 50 min for Indonesian cassia and sappan wood, respectively. Determination of the active compound contents was performed using a high-performance liquid chromatography system equipped with a UV-VIS detector at λmax = 280 nm. The optimization results revealed that the highest levels of trans-cinnamaldehyde, coumarin, and brazilin in NADES extracts were 1907.32, 1735.68, and 368.67 μg/ml, respectively, whereas the lowest levels of these compounds were 453.59, 616.76, and 74.21 μg/ml, respectively. The maximal levels exceeded those obtained using a conventional extraction method, in which 5000 μg/ml Indonesian cassia reflux extract contained only 108.45 μg/ml trans-cinnamaldehyde. Similarly, 1000 μg/ml sappan wood contained only 124.64 μg/ml brazilin. ChCl-glycerol-based NADES was suitable for extracting active compounds from Indonesian cassia and sappan wood; moreover, this solvent is more effective than organic ethanolic coventional solvent.
Collapse
Affiliation(s)
- Aditya Sindu Sakti
- Drug Development Laboratory, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok 16424 West Java, Indonesia
| | - Fadlina Chany Saputri
- Department of Pharmacology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok 16424 West Java Indonesia
| | - Abdul Mun'im
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok 16424 West Java Indonesia
| |
Collapse
|
7
|
Fluorescent 7-Substituted Coumarin Dyes: Solvatochromism and NLO Studies. J Fluoresc 2018; 29:121-135. [PMID: 30374938 DOI: 10.1007/s10895-018-2316-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
The effect of three substituents N,N-diethylamine, carbazole and diphenylamine at the 7 position of coumarin on linear and nonlinear optical properties are studied using absorption and emission solvatochromism, and DFT. By varying the substituent 53 nm red shift is achieved in emission. The polarity plots with regression close to unity revealed good charge transfer in the system. Solvent polarizability and dipolarity are mainly responsible for solvatochromic shift as proved by multilinear regression analysis. General Mulliken Hush analysis shows diphenylamine substituent leads to more charge separation in compound 6c. The hyperpolarizabilities are evaluated by quantum mechanical calculations. Structure of the compounds are optimized at B3LYP/6-31G(d) level and NLO computations are done using range separated hybrid functionals with large basis sets. Second order hyperpolarizability (γ) found 589.27 × 10-36, 841.29 × 10-36 and 1043.00 × 10-36 e.s.u for the compounds 6a, 6b and 6c respectively.
Collapse
|
8
|
García C, Losada A, Sacristán MA, Martínez-Leal JF, Galmarini CM, Lillo MP. Dynamic cellular maps of molecular species: Application to drug-target interactions. Sci Rep 2018; 8:1140. [PMID: 29348621 PMCID: PMC5773516 DOI: 10.1038/s41598-018-19694-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/03/2018] [Indexed: 11/20/2022] Open
Abstract
The design of living cell studies aimed at deciphering the mechanism of action of drugs targeting proteins with multiple functions, expressed in a wide range of concentrations and cellular locations, is a real challenge. We recently showed that the antitumor drug plitidepsin (APL) localizes sufficiently close to the elongation factor eEF1A2 so as to suggest the formation of drug-protein complexes in living cells. Here we present an extension of our previous micro-spectroscopy study, that combines Generalized Polarization (GP) images, with the phasor approach and fluorescence lifetime imaging microscopy (FLIM), using a 7-aminocoumarin drug analog (APL*) as fluorescence tracer. Using the proposed methodology, we were able to follow in real time the formation and relative distribution of two sets of APL-target complexes in live cells, revealing two distinct patterns of behavior for HeLa-wt and APL resistant HeLa-APL-R cells. The information obtained may complement and facilitate the design of new experiments and the global interpretation of the results obtained with other biochemical and cell biology methods, as well as possibly opening new avenues of study to decipher the mechanism of action of new drugs.
Collapse
Affiliation(s)
- Carolina García
- Departamento de Química Física Biológica, Instituto de Química-Física "Rocasolano" (CSIC), Madrid, Spain
| | - Alejandro Losada
- Departamento de Biología Celular y Farmacogenómica, Pharma Mar S.A., Colmenar Viejo, Madrid, Spain
| | - Miguel A Sacristán
- Departamento de Química Física Biológica, Instituto de Química-Física "Rocasolano" (CSIC), Madrid, Spain
| | | | - Carlos M Galmarini
- Departamento de Biología Celular y Farmacogenómica, Pharma Mar S.A., Colmenar Viejo, Madrid, Spain
| | - M Pilar Lillo
- Departamento de Química Física Biológica, Instituto de Química-Física "Rocasolano" (CSIC), Madrid, Spain.
| |
Collapse
|