1
|
Espinosa Rodríguez G, Arboleya JC, Prado D, Munk R, Rodríguez Valerón N. Bioluminescence experience in the holistic cuisine: Making contact through living light and sound. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Bioluminescent Dinoflagellates as a Bioassay for Toxicity Assessment. Int J Mol Sci 2022; 23:ijms232113012. [DOI: 10.3390/ijms232113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Dinoflagellates bioluminescence mechanism depends upon a luciferin–luciferase reaction that promotes blue light emission (480 nm) in specialized luminogenic organelles called scintillons. The scintillons contain luciferin, luciferase and, in some cases, a luciferin-binding protein (LBP), which prevents luciferin from non-enzymatic oxidation in vivo. Even though dinoflagellate bioluminescence has been studied since the 1950s, there is still a lack of mechanistic understanding on whether the light emission process involves a peroxidic intermediate or not. Still, bioassays employing luminous dinoflagellates, usually from Gonyaulax or Pyrocystis genus, can be used to assess the toxicity of metals or organic compounds. In these dinoflagellates, the response to toxicity is observed as a change in luminescence, which is linked to cellular respiration. As a result, these changes can be used to calculate a percentage of light inhibition that correlates directly with toxicity. This current approach, which lies in between fast bacterial assays and more complex toxicity tests involving vertebrates and invertebrates, can provide a valuable tool for detecting certain pollutants, e.g., metals, in marine sediment and seawater. Thus, the present review focuses on how the dinoflagellates bioluminescence can be applied to evaluate the risks caused by contaminants in the marine environment.
Collapse
|
3
|
Liu YJ. Understanding the complete bioluminescence cycle from a multiscale computational perspective: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
|
5
|
|
6
|
Fajardo C, De Donato M, Rodulfo H, Martinez-Rodriguez G, Costas B, Mancera JM, Fernandez-Acero FJ. New Perspectives Related to the Bioluminescent System in Dinoflagellates: Pyrocystis lunula, a Case Study. Int J Mol Sci 2020; 21:E1784. [PMID: 32150894 PMCID: PMC7084563 DOI: 10.3390/ijms21051784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 11/22/2022] Open
Abstract
Pyrocystis lunula is considered a model organism due to its bioluminescence capacity linked to circadian rhythms. The mechanisms underlying the bioluminescent phenomenon have been well characterized in dinoflagellates; however, there are still some aspects that remain an enigma. Such is the case of the presence and diversity of the luciferin-binding protein (LBP), as well as the synthesis process of luciferin. Here we carry out a review of the literature in relation to the molecular players responsible for bioluminescence in dinoflagellates, with particular interest in P. lunula. We also carried out a phylogenetic analysis of the conservation of protein sequence, structure and evolutionary pattern of these key players. The basic structure of the luciferase (LCF) is quite conserved among the sequences reported to date for dinoflagellate species, but not in the case of the LBP, which has proven to be more variable in terms of sequence and structure. In the case of luciferin, its synthesis has been shown to be complex process with more than one metabolic pathway involved. The glutathione S-transferase (GST) and the P630 or blue compound, seem to be involved in this process. In the same way, various hypotheses regarding the role of bioluminescence in dinoflagellates are exposed.
Collapse
Affiliation(s)
- Carlos Fajardo
- Microbiology Laboratory, Institute of Viticulture and Agri-food Research (IVAGRO), Environmental and Marine Sciences Faculty. University of Cadiz (UCA), 11510 Puerto Real, Spain;
| | - Marcos De Donato
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, 76130 Queretaro, Mexico; (M.D.D.); (H.R.)
| | - Hectorina Rodulfo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, 76130 Queretaro, Mexico; (M.D.D.); (H.R.)
| | - Gonzalo Martinez-Rodriguez
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), 11519 Puerto Real, Spain;
| | - Benjamin Costas
- Interdisciplinary Centre of Marine and Environmental Research of the University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal;
- Institute of Biomedical Sciences Abel Salazar (ICBAS-UP), University of Porto, 4050-313 Porto, Portugal
| | - Juan Miguel Mancera
- Faculty of Marine and Environmental Sciences, Biology Department, University of Cadiz (UCA), 11510 Puerto Real, Spain;
| | - Francisco Javier Fernandez-Acero
- Microbiology Laboratory, Institute of Viticulture and Agri-food Research (IVAGRO), Environmental and Marine Sciences Faculty. University of Cadiz (UCA), 11510 Puerto Real, Spain;
| |
Collapse
|
7
|
Theoretical study on bioluminescent mechanism and process of Siberian luminous earthworm Fridericia heliota. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
8
|
Magalhães CM, Esteves da Silva JCG, Pinto da Silva L. Comparative study of the chemiluminescence of coelenterazine, coelenterazine-e and Cypridina luciferin with an experimental and theoretical approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 190:21-31. [PMID: 30453161 DOI: 10.1016/j.jphotobiol.2018.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 01/22/2023]
Abstract
Imidazopyrazinone is a typical scaffold present in marine bioluminescence, in which thermal energy is converted into excitation energy in an enzyme-catalyzed reaction. In fact, the imidazopyrazinone scaffold is a common link among organisms of eight phyla. The characterization of the light emission mechanism is essential for the development of future applications in bioimaging, bioanalysis and biomedicine. Herein, we have studied the chemiluminescent reaction of three commercially-available imidazopyrazinones (Cypridina luciferin, Coelenterazine and Coelenterazine-e) in several aprotic solvents at different pH. We have found that at acidic pH only DMF and DMSO consistently present high light emission, while chemiluminescence in other solvents is negligible. We have attributed this to the inability of most solvents to allow for the deprotonation of the imidazopyrazinone core, thereby preventing the oxygenation step. We have also observed that increasing the pH of the solution leads to the inhibition of chemiluminescence, which we attributed to the deprotonation of the dioxetanone intermediate, as the neutral species is the one associated with efficient chemiexcitation. We have also observed that the pKa of dioxetanone increases with the dielectric constant of the medium. Finally, our work indicated that the chemiexcitation yield increases with increasing polarity of the medium, due to a reduced transition dipole moment associated with S0 → S1 transition.
Collapse
Affiliation(s)
- Carla M Magalhães
- Chemistry Research Unit (CIQUP), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal; Master in Oncology, Institute of Biomedical Sciences Abel Salazar - University of Porto (ICBAS-UP), Porto, Portugal
| | - Joaquim C G Esteves da Silva
- LACOMEPHI, GreenUP, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal; Chemistry Research Unit (CIQUP), Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal; LACOMEPHI, GreenUP, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal.
| |
Collapse
|
9
|
Gao M, Liu YJ. Photoluminescence Rainbow from Coelenteramide-A Theoretical Study. Photochem Photobiol 2018; 95:563-571. [PMID: 30059157 DOI: 10.1111/php.12987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022]
Abstract
A wide variety of marine bioluminescent organisms emit light via the excited-state coelenteramide, which is produced from the coelenterazine oxidation via a series of complicated chemical reactions in protein. Photoluminescence of coelenteramide is a simple way to produce light without experiencing the intricate reactions starting from coelenterazine. To extend the color range of light emission, many coelenterazine analogues were synthesized, but mostly only produce blue and cyan fluorescence. Based on the 42 synthesized coelenterazine analogues, we theoretically studied the absorption and fluorescence properties of the corresponding coelenteramide analogues. The electronic effect, steric effect, conjugated effect and solvated effect were considered. The results indicated that conjugated effect has great influence on the strength and wavelength of fluorescence and large electron transfer is beneficial to redshift. Based on the regularities, we theoretically designed six coelenteramide analogues, and together with the original coelenteramide, the seven-ones emit the seven colors of rainbow via their photoluminescences. This study expands the coelenteramide fluorescence to the whole visible light region and could inspire new application.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Yu M, Ohmiya Y, Naumov P, Liu YJ. Theoretical Insight into the Emission Properties of the Luciferin and Oxyluciferin of Latia. Photochem Photobiol 2018; 94:540-544. [PMID: 29253310 DOI: 10.1111/php.12876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/27/2017] [Indexed: 11/27/2022]
Abstract
Latia neritoides is a small limpet-like snail that produces a bright green bioluminescence (BL) via a unique light-emitting system. The process, mechanism, and even light emitter of its light emission remain unknown, although this BL has been known for decades. Unlike the other BL systems, neither the luciferin (Luc) nor the oxyluciferin (OxyLuc) of Latia is fluorescent according to the previous experiments. To help to identify its bioluminophore, we studied the geometrical and electronic structures and absorption and fluorescence spectra of Latia Luc and its six analogs as well as its OxyLuc in the gas phase and in water. The calculated results provide clear evidence of the lack of fluorescence in the Luc and OxyLuc of Latia. For the analogs of Latia Luc, the electron-withdrawing or electron-donating ability of the substituted group affects the fluorescence. The results shed new light on the BL mechanism and will likely aid the understanding of Latia BL.
Collapse
Affiliation(s)
- Mohan Yu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yoshihiro Ohmiya
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Vacher M, Fdez Galván I, Ding BW, Schramm S, Berraud-Pache R, Naumov P, Ferré N, Liu YJ, Navizet I, Roca-Sanjuán D, Baader WJ, Lindh R. Chemi- and Bioluminescence of Cyclic Peroxides. Chem Rev 2018; 118:6927-6974. [PMID: 29493234 DOI: 10.1021/acs.chemrev.7b00649] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioluminescence is a phenomenon that has fascinated mankind for centuries. Today the phenomenon and its sibling, chemiluminescence, have impacted society with a number of useful applications in fields like analytical chemistry and medicine, just to mention two. In this review, a molecular-orbital perspective is adopted to explain the chemistry behind chemiexcitation in both chemi- and bioluminescence. First, the uncatalyzed thermal dissociation of 1,2-dioxetane is presented and analyzed to explain, for example, the preference for triplet excited product states and increased yield with larger nonreactive substituents. The catalyzed fragmentation reaction and related details are then exemplified with substituted 1,2-dioxetanone species. In particular, the preference for singlet excited product states in that case is explained. The review also examines the diversity of specific solutions both in Nature and in artificial systems and the difficulties in identifying the emitting species and unraveling the color modulation process. The related subject of excited-state chemistry without light absorption is finally discussed. The content of this review should be an inspiration to human design of new molecular systems expressing unique light-emitting properties. An appendix describing the state-of-the-art experimental and theoretical methods used to study the phenomena serves as a complement.
Collapse
Affiliation(s)
- Morgane Vacher
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden
| | - Ignacio Fdez Galván
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden
| | - Bo-Wen Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Stefan Schramm
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | - Romain Berraud-Pache
- Université Paris-Est , Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM , 5 bd Descartes , 77454 Marne-la-Vallée , France
| | - Panče Naumov
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | | | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Isabelle Navizet
- Université Paris-Est , Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM , 5 bd Descartes , 77454 Marne-la-Vallée , France
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular , Universitat de València , P.O. Box 22085 , Valencia , Spain
| | - Wilhelm J Baader
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , Av. Prof. Lineu Prestes, 748 , 05508-000 São Paulo , SP , Brazil
| | - Roland Lindh
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden.,Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
12
|
Pinto da Silva L, Pereira RFJ, Magalhães CM, Esteves da Silva JCG. Mechanistic Insight into Cypridina Bioluminescence with a Combined Experimental and Theoretical Chemiluminescent Approach. J Phys Chem B 2017; 121:7862-7871. [DOI: 10.1021/acs.jpcb.7b06295] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Luís Pinto da Silva
- Chemistry
Research Unit (CIQUP), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
- LACOMEPHI,
Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
| | - Rui F. J. Pereira
- Chemistry
Research Unit (CIQUP), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
| | - Carla M. Magalhães
- Chemistry
Research Unit (CIQUP), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
| | - Joaquim C. G. Esteves da Silva
- LACOMEPHI,
Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
- Chemistry
Research Unit (CIQUP), Department of Geosciences, Environment and
Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
13
|
Sharifian S, Homaei A, Hemmati R, Khajeh K. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:115-128. [DOI: 10.1016/j.jphotobiol.2017.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
|
14
|
Ngo PD, Mansoorabadi SO. Investigation of the Dinoflagellate Bioluminescence Mechanism: Chemically Initiated Electron Exchange Luminescence or Twisted Intramolecular Charge Transfer? CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Phong D. Ngo
- Department of Chemistry and Biochemistry Auburn University 179 Chemistry Building Auburn AL 36849 USA
| | - Steven O. Mansoorabadi
- Department of Chemistry and Biochemistry Auburn University 179 Chemistry Building Auburn AL 36849 USA
| |
Collapse
|