1
|
Yang B, Zeng J, Zhao G, Ding C, Chen L, Huang Y. Cascade enzyme-mimicking with spatially separated gold-ceria for dual-mode detection of superoxide anions. Biosens Bioelectron 2025; 267:116847. [PMID: 39418867 DOI: 10.1016/j.bios.2024.116847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Metal-semiconductor nanozyme of dumbbell Au-CeO2 with spatially separated heterostructure has cascade superoxide dismutase (SOD)-like and peroxidase (POD)-like activities for superoxide anions detection. It was synthesized by selective growth of CeO2 at the ends of Au nanorod (Au NR). Taking advantage of the excellent local surface plasmon resonance (LSPR) effect of Au NR, the spatially separated Au-CeO2 has a higher photothermal effect than the continuously growing core-shell structure of Au@CeO2. Meanwhile, the hot electrons of Au NR could transfer to CeO2 under 808 nm laser irradiation, changing the ratio of Ce3+/Ce4+ redox couples over CeO2 and facilitating H2O2 decomposition thus enhancing POD-like activity. Based on the SOD-like activity of Au-CeO2, superoxide anion (O2·-) can be transformed into hydrogen peroxide (H2O2). Dual-mode including absorbance and temperature sensing detection of O2·-, with the detection range from nM to μM i.e., 0.1-150 μM and LOD of 0.033 μM (S/N = 3) was achieved through the cascade catalysis and photothermal effect. The as-proposed method was applicable to both cancer and normal cell samples with satisfactory accuracy and recovery.
Collapse
Affiliation(s)
- Bing Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Junyi Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Guoxu Zhao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Caiping Ding
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Monsour CG, Tadle AB, Tafolla-Aguirre BJ, Lakshmanan N, Yoon JH, Sabio RB, Selke M. Singlet Oxygen Quenching by Resveratrol Derivatives. Photochem Photobiol 2023; 99:672-679. [PMID: 36031343 PMCID: PMC9971345 DOI: 10.1111/php.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
We investigated the singlet oxygen quenching ability of several derivatives of trans-resveratrol which have been reported to have significant antioxidant ability, including photoprotective activity. We measured the total rate constants of singlet oxygen removal (kT ) by the methylated resveratrol derivative 1,3-dimethoxy-5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene, and the partially methylated resveratrol derivatives 4-((E)-2-(3,5-dimethoxyphenyl)ethenyl)phenol (pterostilbene), 5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene-1,3-diol and (2R,3R)-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-2,3-dihydrochromen-4-one (dihydromyricetin). A protic solvent system results in higher kT values, except for the completely methylated derivative. We also investigated the ability of trans-resveratrol to directly act as a photosensitizer (rather than via secondary photoproducts resulting from other primary photochemical reactions) for the production of singlet oxygen but found that neither resveratrol nor any of its derivatives are able to do so. We then studied the chemical reactions of the methylated derivative with singlet oxygen. The main pathway consists of a [4 + 2] cycloaddition reaction involving the trans-double bond and the para-substituted benzene ring similar to what has been observed for trans-resveratrol. Unlike trans-resveratrol, the primary singlet oxygen product undergoes a second [4 + 2] cycloaddition with singlet oxygen leading to the formation of diendoperoxides. A second reactivity pathway for both trans-resveratrol and the methylated derivative leads to the formation of aldehydes via cleavage of a transient dioxetane.
Collapse
Affiliation(s)
- Charlotte G. Monsour
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Abegail B. Tadle
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | | | - Nidhi Lakshmanan
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Jin Hyeok Yoon
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Rhemrose B. Sabio
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Matthias Selke
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| |
Collapse
|