1
|
Tan H, Ren H, Chai J, Zhai C, Li T, Zhou X, Lee J, Li X, Zhao Y. Protective effect of ginseng berry saponin conversion products on skin photodamage caused by UVB in vitro and in vivo. Food Res Int 2024; 198:115379. [PMID: 39643347 DOI: 10.1016/j.foodres.2024.115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
Ultraviolet (UV) B irradiation is closely related to skin aging and skin damage. Here, we report the photoprotective mechanism of action of ginseng berry rare saponins (GFRS) on UVB-induced damage to human keratinocytes and mouse skin. Several UVB irradiation-induced cytotoxicity and oxidative stress responses were assessed. GFRS preconditioning significantly improved HaCaT cell survival and reduced the levels of the DNA damage markers histone H2AX and cyclobutane pyrimidine dimer. Under oxidative stress, GFRS could reduce the transformation and loss of the mitochondrial membrane potential to the monomer form; effectively clear the expression of lipid reactive oxygen species, malondialdehyde, and other peroxides, and restore total superoxide dismutase, glutathione peroxidase, and catalase levels. The occurrence of ferroptosis after UVB induction was also studied. Erastin exacerbated the induced cellular iron overload, whereas GFRS and Fer-1 reversed this response to varying degrees. Mechanistically, GFRS activated the Nrf2/HO-1/GPX4 pathway and inhibited the phenomenon of ferroptosis in cells. Our findings were confirmed using a mouse model of UV induced skin injury. GFRS not only mitigated lipid peroxides and iron overload in tissues but also prevented skin barrier damage and collagen loss. Therefore, GFRS shows potential as a novel functional product as it protects the skin from UVB light-induced damage.
Collapse
Affiliation(s)
- Hongyan Tan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Honghong Ren
- Perfect (Guangdong) Co., Ltd., Guangdon, 528400, China
| | - Jiayi Chai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Changzhen Zhai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Tao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xinyang Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jungjoon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xiaomin Li
- Perfect (Guangdong) Co., Ltd., Guangdon, 528400, China.
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
2
|
Montero P, Roger I, Milara J, Cortijo J. Damaging effects of UVA, blue light, and infrared radiation: in vitro assessment on a reconstructed full-thickness human skin. Front Med (Lausanne) 2023; 10:1267409. [PMID: 38105899 PMCID: PMC10722227 DOI: 10.3389/fmed.2023.1267409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Exposure to solar radiation can cause a range of skin damage, including sunburn, erythema, skin carcinogenesis, the release of reactive oxygen species (ROS), inflammation, DNA damage, and photoaging. Other wavelengths beyond UVB, such as UVA, blue light, and infrared radiation, can also contribute to the harmful effects of solar radiation. Reconstructed full-thickness human skin has the potential to serve as effective predictive in vitro tools for evaluating the effects of solar radiation on the skin. The aim of this work was to evaluate the damaging effects of UVA, blue light, and infrared radiation in a full-thickness skin model in terms of viability, inflammation, photoaging, tissue damage, photocarcinogenesis. Methods Full thickness skin models were purchased from Henkel (Phenion FT; Düsseldorf, Germany), and irradiated with increasing doses of UVA, blue light, or infrared radiation. Different endpoints were analyzed on the tissues: Hematoxylin-eosin staining, inflammation mediators, photoaging-related dermal markers and oxidative stress marker GPX1, evaluated by real-time quantitative PCR, as well as photocarcinogenesis markers by Western Blot. Results and Discussion The results showed differential responses in cytokine release for each light source. In terms of photoaging biomarkers, collagen, metalloproteinases 1 and 9, elastin, and decorin were modulated by UVA and blue light exposure, while not all these markers were affected by infrared radiation. Furthermore, exposure to UVA and blue light induced loss of fibroblasts and modulation of the photocarcinogenesis markers p53 and p21. In conclusion, the presented results suggest that the various wavelengths of solar light have distinct and differential damaging effects on the skin. Understanding the differential effects of UVA, blue light, and infrared radiation can serve as a valuable tool to investigate the efficacy of photoprotective agents in full thickness skin models.
Collapse
Affiliation(s)
- Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Su J, Su Q, Hu S, Ruan X, Ouyang S. Research Progress on the Anti-Aging Potential of the Active Components of Ginseng. Nutrients 2023; 15:3286. [PMID: 37571224 PMCID: PMC10421173 DOI: 10.3390/nu15153286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Aging is a cellular state characterized by a permanent cessation of cell division and evasion of apoptosis. DNA damage, metabolic dysfunction, telomere damage, and mitochondrial dysfunction are the main factors associated with senescence. Aging increases β-galactosidase activity, enhances cell spreading, and induces Lamin B1 loss, which further accelerate the aging process. It is associated with a variety of diseases, such as Alzheimer's disease, Parkinson's, type 2 diabetes, and chronic inflammation. Ginseng is a traditional Chinese medicine with anti-aging effects. The active components of ginseng, including saponins, polysaccharides, and active peptides, have antioxidant, anti-apoptotic, neuroprotective, and age-delaying effects. DNA damage is the main factor associated with aging, and the mechanism through which the active ingredients of ginseng reduce DNA damage and delay aging has not been comprehensively described. This review focuses on the anti-aging mechanisms of the active ingredients of ginseng. Furthermore, it broadens the scope of ideas for further research on natural products and aging.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qiaofen Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China;
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
4
|
Sun G, Wang J, Xu X, Zhai L, Li Z, Liu J, Zhao D, Jiang R, Sun L. Panax ginseng Meyer cv. Silvatica phenolic acids protect DNA from oxidative damage by activating Nrf2 to protect HFF-1 cells from UVA-induced photoaging. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115883. [PMID: 36328205 DOI: 10.1016/j.jep.2022.115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Long-wave ultraviolet A (UVA) causes skin aging by damaging the fine structures of the skin, such as elastic fibers and collagen fibers, through oxidation. Currently, the use of plant extracts to protect skin from photoaging is a popular method. Panax ginseng C.A. Meyer exerts commendable anti-photoaging and antioxidant effects. P. ginseng Meyer cv. Silvatica, also known as forest ginseng (FG), is a type of ginseng cultivated by artificially simulating the growth environment of wild ginseng aged >15 years. However, there are only a few reports on its anti-photoaging effect on the skin caused by UVA stimulation. AIM OF THE STUDY To investigate whether isolated and extracted FG can inhibit skin photoaging as well as to explore its action mechanism. METHODS The FG extract (FGE) was obtained from the supernatant of FG after water extraction and alcohol precipitation with the D101 resin. The composition and content of phenolic acids in FGE were determined by high-performance liquid chromatography (HPLC). The MTT assay was performed to detect cell viability. The ratio of SA-β-GAL-positive cells, CoL-I level, 8-OHdG concentration, MDA, GSH, GPx, SOD, and CAT activity were measured using relevant kits. Furthermore, cell cycle alterations and ROS accumulation were assessed by flow cytometry. The expressions of p53, p21, p16, and Keap1 protein were detected by Western blotting. The Nrf2 translocation was monitored by immunofluorescence staining. RESULTS The findings revealed that FGE significantly restored UVA injury-induced cell viability, reduced the proportion of SA-β-GAL-positive cells, and increased the level of CoL-I secretion in a dose-dependent manner, where the main ingredients were chlorogenic acid, protocatechuic acid, salicylic acid, p-hydroxybenzoic acid, vanillic acid, ferulic acid, and caffeic acid. Further studies indicated that this phenolic acid mixture (PAM) could alleviate UVA-induced HFF-1 cell cycle arrest and protect the DNA from oxidative damage caused by UVA stimulation. Moreover, the expressions of cell cycle regulatory proteins p53, p21, and p16 and the accumulation of ROS were inhibited, the translocation of Nrf2 into the nucleus was promoted, the expression of Keap1 protein was inhibited, the activity of intracellular antioxidant indicators GSH, GPx, SOD, and CAT was enhanced, and the expression of malondialdehyde (MDA) was inhibited. CONCLUSIONS Collectively, our results demonstrated that FG phenolic acids protect DNA from oxidative damage by activating Nrf2 to safeguard the skin from photoaging induced by UVA stimulation.
Collapse
Affiliation(s)
- Guang Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Jing Wang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lu Zhai
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zhenzhuo Li
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China; Jilin Province Traditional Chinese Medicine Characteristic Health Product Research and Development Cross-regional Cooperation Science and Technology Innovation Center, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China.
| |
Collapse
|
5
|
Jung WH, Song J, You G, Lee JH, Lee SW, Ahn JH, Mok H. Protection of Skin Fibroblasts from Infrared-A-Induced Photo-Damage Using Ginsenoside Rg3(S)-Incorporated Soybean Lecithin Liposomes. J Microbiol Biotechnol 2023; 33:135-141. [PMID: 36575857 PMCID: PMC9895989 DOI: 10.4014/jmb.2210.10048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Protection of skin cells from chronic infrared-A (IRA) irradiation is crucial for anti-photoaging of the skin. In this study, we investigated the protective activity of Rg3(S) and Rg3(S)-incorporated anionic soybean lecithin liposomes (Rg3/Lipo) with a size of approximately 150 nm against IRA-induced photodamage in human fibroblasts. The formulated Rg3/Lipo showed increased solubility in aqueous solution up to a concentration of 200 μg/ml, compared to free Rg3(S). In addition, Rg3/Lipo exhibited superior colloidal stability in aqueous solutions and biocompatibility for normal human dermal fibroblasts (NHDFs). After repeated IRA irradiation on NHDFs, elevated levels of cellular and mitochondrial reactive oxygen species (ROS) were greatly reduced by Rg3(S) and Rg3/Lipo. In addition, cells treated with Rg3/Lipo exhibited noticeably reduced apoptotic signals following IRA irradiation compared to untreated cells. Thus, considering aqueous solubility and cellular responses, Rg3/Lipo could serve as a promising infrared protector for healthy aging of skin cells.
Collapse
Affiliation(s)
- Won Ho Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jihyeon Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Gayeon You
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jun Hyuk Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sin Won Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Joong-Hoon Ahn
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-450-0448 E-mail:
| |
Collapse
|
6
|
Yang J, Song J, Kim SJ, You G, Lee JB, Mok H. Chronic infrared-A irradiation-induced photoaging of human dermal fibroblasts from different donors at physiological temperature. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:571-581. [PMID: 35437847 DOI: 10.1111/phpp.12793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In this study, we examined cellular responses to acute and chronic IRA irradiation at mild and natural levels of exposure in two types of human fibroblasts, each isolated from a different donor, at physiological temperature (34°C). METHOD Two types of human dermal fibroblasts (derived from a 20- and 50-year-old women, respectively) were exposed to different repeat numbers of IRA exposure (3, 6, 10, and 14 times; 42 mW/cm2 ) at a frequency of 3-4 times per week (4 h per irradiation). Cellular responses to acute and chronic IRA irradiation were examined by reactive oxygen species (ROS) level, apoptotic signals, cellular morphology, and collagen level. RESULTS We demonstrated that chronic IRA irradiation-induced severe cellular damage, including prolonged cell proliferation, increased intracellular ROS levels, activated cellular apoptosis, and elongated cell morphology, whereas acute IRA irradiation had negligible effects at 34°C. In addition, it was evident that the degree of cellular damage due to IRA irradiation differed according to the type of fibroblasts. CONCLUSIONS Considering the severe cellular damage induced by chronic IRA irradiation without heat, continuous exposure of skin to IRA irradiation during daily life may be harmful enough to induce photoaging.
Collapse
Affiliation(s)
- Jiwon Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Jihyeon Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | | | - Gayeon You
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | | | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
7
|
Wan S, Liu Y, Shi J, Fan D, Li B. Anti-Photoaging and Anti-Inflammatory Effects of Ginsenoside Rk3 During Exposure to UV Irradiation. Front Pharmacol 2021; 12:716248. [PMID: 34671254 PMCID: PMC8521102 DOI: 10.3389/fphar.2021.716248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
Ginseng is a widely cultivated perennial plant in China and Korea. Ginsenoside Rk3 is one of the major active components of ginseng and is a promising candidate to regulate skin pigments and exert anti-photoaging effects on skin physiology. Ginsenoside Rk3 was mixed with a cream (G-Rk3 cream) and smeared on the skin of mice. Then, the mice were exposed to ultraviolet (UV) A (340 nm and 40 W) and UVB (313 nm and 40 W) radiation. Special attention was given to the anti-photoaging and anti-inflammatory effects of ginsenoside Rk3 on the mouse skin. Macroscopic evaluation indicated that the mouse dorsal skin looked smooth and plump even under UV irradiation for 12 weeks. Pathological analysis indicated that there was no obvious photoaging or inflammation in the mouse skin that was treated with the G-Rk3 cream. More healthy, intact, and neat collagen fibers were observed in mice treated with the G-Rk3 cream than in untreated mice. Further analysis proved that ginsenoside Rk3 could inhibit the decrease in water and hydroxyproline levels in skin tissues and the loss of superoxide dismutase and glutathione peroxidase activities in the blood. Moreover, ginsenoside Rk3 slowed or halted increases in malondialdehyde, matrix metalloproteinase (MMP)-1, and MMP-3 levels in the blood and levels of interleukin 1, interleukin 6, and tumor necrosis factor α in skin tissues. In conclusion, ginsenoside Rk3 plays a significant role in inhibiting photoaging and inflammation to protect skin health.
Collapse
Affiliation(s)
- Shichao Wan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, China.,Shaanxi R and D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, China.,Biotech and Biomed Research Institute, Northwest University, Xi'an, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, China.,Shaanxi R and D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, China.,Biotech and Biomed Research Institute, Northwest University, Xi'an, China
| | - Jingjing Shi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, China.,Shaanxi R and D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, China.,Biotech and Biomed Research Institute, Northwest University, Xi'an, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, China.,Shaanxi R and D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, China.,Biotech and Biomed Research Institute, Northwest University, Xi'an, China
| | - Binglin Li
- College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
8
|
Protective Effects of Titanium Dioxide-based Emulsion after Short-term and Long-term Infrared-A Ray Irradiation on Skin Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
You L, Cho JY. The regulatory role of Korean ginseng in skin cells. J Ginseng Res 2021; 45:363-370. [PMID: 34025129 PMCID: PMC8134839 DOI: 10.1016/j.jgr.2020.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/16/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023] Open
Abstract
As the largest organ in our body, the skin acts as a barrier against external stress and damages. There are various cell types of skin, such as keratinocytes, melanocytes, fibroblasts, and skin stem cells. Korean ginseng, which is one of the biggest distributions of ginseng worldwide, is processed into different products, such as functional food, cosmetics, and medical supplies. This review aims to introduce the functional role of Korean ginseng on different dermal cell types, including the impact of Korean ginseng in anti-photodamaging, anti-inflammatory, anti-oxidative, anti-melanogenic, and wound healing activities, etc. We propose that this information could form the basis of future research of ginseng-derived components in skin health.
Collapse
Affiliation(s)
- Long You
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
10
|
Synthesis of Kisspeptin-Mimicking Fragments and Investigation of their Skin Anti-Aging Effects. Int J Mol Sci 2020; 21:ijms21228439. [PMID: 33182726 PMCID: PMC7698007 DOI: 10.3390/ijms21228439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, a number of active materials have been developed to provide anti-aging benefits for skin and, among them, peptides have been considered the most promising candidate due to their remarkable and long-lasting anti-wrinkle activity. Recent studies have begun to elucidate the relationship between the secretion of emotion-related hormones and skin aging. Kisspeptin, a neuropeptide encoded by the KISS1 gene, has gained attention in reproductive endocrinology since it stimulates the reproductive axis in the hypothalamus; however, the effects of Kisspeptin on skin have not been studied yet. In this study, we synthesized Kisspeptin-10 and Kisspeptin-E, which are biologically active fragments, to mimic the action of Kisspeptin. Next, we demonstrated the anti-aging effects of the Kisspeptin-mimicking fragments using UV-induced skin aging models, such as UV-induced human dermal fibroblasts (Hs68) and human skin explants. Kisspeptin-E suppressed UV-induced 11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) stimulation leading to a regulation of skin aging related genes, including type I procollagen, matrix metalloproteinases-1 (MMP-1), interleukin-6 (IL-6), and IL-8, and rescued the skin integrity. Taken together, these results suggest that Kisspeptin-E could be useful to improve UV-induced skin aging by modulating expression of stress related genes, such as 11β-HSD1.
Collapse
|
11
|
Jiang R, Xu X, Sun Z, Wang F, Ma R, Feng K, Li T, Sun L. Protective Effects of Ginseng Proteins on Photoaging of Mouse Fibroblasts Induced by
UVA. Photochem Photobiol 2019; 96:113-123. [DOI: 10.1111/php.13156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Rui Jiang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology College of Science Beihua University Jilin City Jilin Province China
- Research Center of Traditional Chinese Medicine The Affiliated Hospital to Changchun University of Chinese Medicine Changchun Jilin Province China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine The Affiliated Hospital to Changchun University of Chinese Medicine Changchun Jilin Province China
| | - Zhuo Sun
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology College of Science Beihua University Jilin City Jilin Province China
| | - Fei Wang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology College of Science Beihua University Jilin City Jilin Province China
| | - Rui Ma
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology College of Science Beihua University Jilin City Jilin Province China
| | - Kai Feng
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology College of Science Beihua University Jilin City Jilin Province China
| | - Tong Li
- Departments of Pathology The Johns Hopkins University School of Medicine Baltimore MD
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine The Affiliated Hospital to Changchun University of Chinese Medicine Changchun Jilin Province China
| |
Collapse
|
12
|
De Tollenaere M, Meunier M, Scandolera A, Sandre J, Lambert C, Chapuis E, Auriol D, Reynaud R. Well-aging: A new strategy for skin homeostasis under multi-stressed conditions. J Cosmet Dermatol 2019; 19:444-455. [PMID: 31232507 PMCID: PMC7003805 DOI: 10.1111/jocd.13047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/19/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Background Several studies evidenced significant increase of cortisol is the consequence of UV or emotional stress and leads to various deleterious effects in the skin. Aim The well‐aging, a new concept of lifestyle, procures an alternative to the anti‐aging strategy. We demonstrated that Tephrosia purpurea extract is able to stimulate well‐being hormones while reducing cortisol release. Furthermore, we hypothesized that the extract could positively influence the global skin homeostasis. Method We evaluated the impact of the extract on cortisol, β‐endorphin, and dopamine, released by normal human epidermal keratinocytes (NHEKs). A gene expression study was realized on NHEKs and NHDFs. The protein over‐expression of HMOX1 and NQO1 was evidenced at cellular and tissue level. Finally, we conducted a clinical study on 21 women living in a polluted environment in order to observe the impact of the active on global skin improvement. Results The extract is able to reduce significantly the cortisol release while inducing the production of β‐endorphin and dopamine. The gene expression study revealed that Tephrosia purpurea extract up‐regulated the genes involved in antioxidant response and skin renewal. Moreover, the induction of HMOX and NQO1 expression was confirmed on NHDFs, NHEKs and in RHE. We clinically demonstrated that the extract improved significantly the skin by reducing dark circles, represented by an improvement of L*, a*, and ITA parameters. Conclusion Tephrosia purpurea extract has beneficial effects on skin homeostasis through control of the well‐being state and antioxidant defenses leading to an improvement of dark circles, a clinical features particularly impacted by emotional and environmental stress.
Collapse
Affiliation(s)
| | - Marie Meunier
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | | | - Jérôme Sandre
- Chirurgien Plasticien et Esthétique, Polyclinique de Courlancy, Reims, France
| | - Carole Lambert
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | - Emilie Chapuis
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | - Daniel Auriol
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | - Romain Reynaud
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| |
Collapse
|
13
|
Chen J, Liu GZ, Sun Q, Zhang F, Liu CY, Yuan L, Zhao XQ, Wang YJ, Jia YS. Protective effects of ginsenoside Rg3 on TNF-α-induced human nucleus pulposus cells through inhibiting NF-κB signaling pathway. Life Sci 2018; 216:1-9. [PMID: 30428306 DOI: 10.1016/j.lfs.2018.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 01/07/2023]
Abstract
This work aims to evaluate the effect of ginsenoside Rg3 on the apoptosis, proliferation, extracellular matrix (ECM) metabolism and oxidative stress-induced damage of human nucleus pulposus cells (NPCs) induced by TNF-α. The human NPCs were divided into Control, TNF-α, TNF-α + low Rg3, TNF-α + medium Rg3 and TNF-α + high Rg3 groups. Annexin V-FITC/PI, CCK-8 and flow cytometry were used to detect the apoptosis, proliferation, and cell cycle of NPCs, respectively. The expressions of ECM-related molecules were determined by qRT-PCR, ELISA and Western blotting. NF-κB p65 pathway and apoptosis-related proteins were evaluated by Western blotting, and the production of reactive oxygen species (ROS) was detected by DCFH-DA assay. Compared with Control group, NPCs in the TNF-α group had elevated proportion of apoptotic cells with up-regulation of Bax and Caspase-3 and down-regulation of Bcl-2. Besides, TNF-α inhibited proliferation and arrested cell cycle at G1 of NPCs. Moreover, human NPCs induced by TNF-α presented the increase in the expressions of ECM degrading genes (MMP3 and ADAMTS5), the content of ROS and malondialdehyde (MDA), and the expression of NF-κB/p65 in nucleus, but showed the decrease in the expression of ECM synthesis genes (Aggrecan and COL2A1) and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX). However, NPCs treated by both TNF-α and Rg3 demonstrated a certain degree of reversal in the above indexes, which became increasingly evident with the up-regulation of Rg3 concentration. Ginsenoside Rg3 may exert the effect of attenuating TNF-α-induced NPCs impairment via blocking the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Gen-Zhe Liu
- Department of Orthopedics, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Qi Sun
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Zhang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chu-Yin Liu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Lin Yuan
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xue-Qian Zhao
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yong-Jun Wang
- Institute of Spinal Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yu-Song Jia
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|