1
|
Mandal S, Mondal C, Lyndem LM. Probiotics: an alternative anti-parasite therapy. J Parasit Dis 2024; 48:409-423. [PMID: 39145362 PMCID: PMC11319687 DOI: 10.1007/s12639-024-01680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/27/2024] [Indexed: 08/16/2024] Open
Abstract
This paper review about probiotic effects and mechanism of action against the gut and non-gut helminths and protozoan parasites. Gastrointestinal parasitic infections are considered a serious health problem and are widely distributed globally. The disease process which emanates from this parasite infection provides some of the many public and veterinary health problems in the tropical and sub-tropical countries. Prevention and control of the parasite disease is through antihelmintic and anti-protozoan drugs, but, due to the increasing emergence of such drug resistance, eradication of parasite infestation in human and livestock still lingers a challenge, which requires the development of new alternative strategies. The use of beneficial microorganisms i.e. probiotics is becoming interesting due to their prophylactic application against several diseases including parasite infections. Recent studies on the interactions between probiotics, parasites and host immune cells using animal models and in vitro culture systems has increased considerably and draw much attention, yet the mechanisms of actions mediating the positive effects of these beneficial microorganisms on the hosts remain unexplored. Therefore, the aim of the present review is to summarize the latest findings on the probiotic research against the gut and non-gut parasites of significance.
Collapse
Affiliation(s)
- Sudeshna Mandal
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| | - Chandrani Mondal
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| | - Larisha M. Lyndem
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| |
Collapse
|
2
|
Conrad NL, Zorzi VSG, Pinheiro NB, Borchard JL, de Moura MQ, Leite FPL. Dynamics of ex vivo cytokine transcription during experimental Toxocara canis infection in Balb/c mice. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e014223. [PMID: 38511816 PMCID: PMC10954251 DOI: 10.1590/s1984-29612024017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
The cytokine microenvironment is crucial in generating and polarizing the immune response. A means of monitoring this environment would be of great value for better understanding Toxocara canis immune modulation. The aim of this study was to analyze the dynamics of cytokine transcription ex vivo, during early (24-48 hours) and late (15-30 days) times post-infection, in the mesenteric lymph nodes, spleen and intestinal mucosa of Balb/c mice experimentally infected with T. canis larvae. Mice in the treated group were infected with 100 third-stage larvae (L3), whereas mice in the control group were not infected. Analyses were performed at different times: 24-48 hours post-infection (HPI), 15-30 days post-infection (DPI). IL4, IL10, IL12 and Ym1 mRNA transcriptions were analyzed through qPCR. This study showed cytokine transcription mediated by migrating larvae in the mesenteric lymph nodes and spleen at 24-48 HPI, whereas cytokine transcription in the intestinal mucosa was observed only at late times (15-30 DPI). These results suggest that the T. canis larvae migration during infection might play a role in cytokine dynamics. Since the cytokine microenvironment is crucial in modulating immune response, knowledge of cytokine dynamics during T. canis infections pave the way to better understand its interaction with the host.
Collapse
Affiliation(s)
- Neida Lucia Conrad
- Programa de Pós-graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Vitória Sequeira Gonçalves Zorzi
- Programa de Pós-graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Natália Berne Pinheiro
- Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Jéssica Lopes Borchard
- Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Micaele Quintana de Moura
- Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Fábio Pereira Leivas Leite
- Programa de Pós-graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
- Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| |
Collapse
|
3
|
Dos Santos VHB, de Azevedo Ximenes ECP, de Souza RAF, da Silva RPC, da Conceição Silva M, de Andrade LVM, de Souza Oliveira VM, de Melo-Júnior MR, Costa VMA, de Barros Lorena VM, de Araújo HDA, de Lima Aires A, de Azevedo Albuquerque MCP. Effects of the probiotic Bacillus cereus GM on experimental schistosomiasis mansoni. Parasitol Res 2023; 123:72. [PMID: 38148420 DOI: 10.1007/s00436-023-08090-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Probiotics contribute to the integrity of the intestinal mucosa and preventing dysbiosis caused by opportunistic pathogens, such as intestinal helminths. Bacillus cereus GM obtained from Biovicerin® was cultured to obtain spores for in vivo evaluation on experimental schistosomiasis. The assay was performed for 90 days, where all animals were infected with 50 cercariae of Schistosoma mansoni on the 15th day. Three experimental groups were formed, as follows: G1-saline solution from the 1st until the 90th day; G2-B. cereus GM (105 spores in 300 μL of sterile saline) from the 1st until the 90th day; and G3-B. cereus GM 35th day (onset of oviposition) until the 90th day. G2 showed a significant reduction of 43.4% of total worms, 48.8% of female worms and 42.5% of eggs in the liver tissue. In G3, the reduction was 25.2%, 29.1%, and 44% of the total number of worms, female worms, and eggs in the liver tissue, respectively. G2 and G3 showed a 25% (p < 0.001) and 22% (p < 0.001) reduction in AST levels, respectively, but ALT levels did not change. ALP levels were reduced by 23% (p < 0.001) in the G2 group, but not in the G3. The average volume of granulomas reduced (p < 0.0001) 65.2% and 46.3% in the liver tissue and 83.0% and 53.2% in the intestine, respectively, in groups G2 and G3. Th1 profile cytokine (IFN-γ, TNF-α, and IL-6) and IL-17 were significantly increased (p < 0.001) stimulated with B. cereus GM in groups G2 and G3. IL-4 showed significant values when the stimulus was mediated by ConA. By modulating the immune response, B. cereus GM reduced the burden of worms, improved some markers of liver function, and reduced the granulomatous inflammatory reaction in mice infected with S. mansoni, especially when administered before infection.
Collapse
Affiliation(s)
- Victor Hugo Barbosa Dos Santos
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eulália Camelo Pessoa de Azevedo Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Renan Andrade Fernandes de Souza
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | - Valdenia Maria de Souza Oliveira
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Vlaudia Maria Assis Costa
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Patologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Hallysson Douglas Andrade de Araújo
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Biotecnologia e Fármacos e Laboratório de Tecnologia de Biomateriais - Centro Acadêmico de Vitória de Santo Antão, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - André de Lima Aires
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
4
|
Salama AM, Elmahy RA, Ibrahim HA, Amer AIM, Eltantawy AF, Elgendy DI. Effects of metformin on parasitological, pathological changes in the brain and liver and immunological aspects during visceral toxocariasis in mice. Parasitol Res 2023; 122:3213-3231. [PMID: 37874393 PMCID: PMC10667394 DOI: 10.1007/s00436-023-08011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
There are currently insufficient anthelmintic medications available for the treatment of toxocariasis. For instance, Albendazole (ABZ) is the preferred medication, but its effectiveness against tissue-dwelling parasites is limited. In addition, Metformin (MTF) is a widely used oral antidiabetic medication that is considered to be safe for treatment. This study aimed to investigate any potential effects of MTF, alone or in combination with ABZ, on mice infections caused by Toxocara canis (T. canis). The efficacy of the treatment was assessed in the acute and chronic phases of the infection by larval recovery and histopathological, immunohistochemical, and biochemical studies. The results showed that combined therapy significantly reduced larval counts in the liver, brain, and muscles and ameliorated hepatic and brain pathology. It reduced oxidative stress and TGF-β mRNA expression and increased FGF21 levels in the liver. It decreased TNF-α levels and MMP-9 expression in the brain. In addition, it increased serum levels of IL-12 and IFN-γ and decreased serum levels of IL-4 and IL-10. In the acute and chronic phases of the infection, the combined treatment was more effective than ABZ alone. In conclusion, this study highlights the potential role of MTF as an adjuvant in the treatment of experimental T. canis infection when administered with ABZ.
Collapse
Affiliation(s)
- Amina M Salama
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha A Elmahy
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hoda A Ibrahim
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Asmaa Fawzy Eltantawy
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
5
|
de Moura MQ, da Cunha CNDO, de Sousa NFGC, Cruz LAX, Rheingantz MG, Walcher DL, Mattos GT, Martins LHR, de Ávila LFDC, Berne MEA, Scaini CJ. Immunomodulation in the intestinal mucosa of mice supplemented with Lactobacillus rhamnosus (ATCC 7469) and infected with Toxocara canis. Immunobiology 2023; 228:152359. [PMID: 36857908 DOI: 10.1016/j.imbio.2023.152359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/31/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Toxocariasis is an anthropozoonosis caused by the helminth Toxocara canis that shows different clinical manifestations as visceral, ocular, or neurological toxocariasis forms. Probiotics have been studied as alternatives to prevent and treat this parasitosis. Lactobacillus rhamnosus is a prospect that presents immunomodulatory activity that acts to strengthen the intestinal barrier. In this context, the main objective of this study was to evaluate the protective capacity and immunomodulatory action of the probiotic Lactobacillus rhamnosus at the level of the intestinal mucosa in different stages of T. canis infection (acute and chronic). Mice were supplemented by oral gavage with 1 × 107 UFC/mL L. rhamnosus for 15 days before inoculation with 100 embryonated eggs of T. canis. Euthanasia of mice was conducted at three different time points: 2, 15 and 30 days post-inoculation (PI). The brain, lungs and liver were collected to evaluate the intensity of infection. The small intestines were removed, and mucosal cells of the duodenum were collected to perform gene analysis of IFN-γ, IL-10, IL-4 and IL-13 by real-time polymerase chain reaction (qPCR). Jejunum and ileum segments were analysed by histological techniques. A reduction of 51% in infection intensity was observed in the tissue of supplemented animals evaluated 2 days PI; however, analysis of groups 15 and 30 days PI did not show a protective effect. The intestinal mucosa of supplemented animals presented an inflammatory process that initiated at 2 days PI, persisted at 15 days PI and had regressed at 30 days PI. IL-13 transcription was increased in the probiotic group 2 days after supplementation ended; however, the same increase was not observed in the group that was supplemented and infected. Toxocara canis modulated the local immune system, with suppression of IFN-γ at 2 days PI and increased levels of IL-4 and IL-10 at 15 days PI. These results indicate that, under the studied conditions, the protective effect of Lactobacillus rhamnosus against infection caused by T. canis is not related to IL-4, IL-10 or IFN-γ but could be influenced by IL-13 action at 2 days PI. The probiotic stimulated immune cell recruitment to the intestinal mucosa, which can be involved in the diminished capacity of larval penetration in the mucosa, resulting in the reduced infection intensity observed during acute infection.
Collapse
Affiliation(s)
- Micaele Quintana de Moura
- Post-Graduate Program in Health Sciences - Parasitology Laboratory, Federal Univesity of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil.
| | - Carolina Netto de Oliveira da Cunha
- Post-Graduate Program in Health Sciences - Parasitology Laboratory, Federal Univesity of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | | | - Luis Augusto Xavier Cruz
- Department of Morphology, Institute of Biology, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Maria Gabriela Rheingantz
- Department of Morphology, Institute of Biology, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Débora Liliane Walcher
- Post-Graduate Program in Microbiology and Parasitology, Department of Microbiology and Parasitology, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Gabriela Torres Mattos
- Post-Graduate Program in Health Sciences - Parasitology Laboratory, Federal Univesity of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Lourdes Helena Rodrigues Martins
- Post-Graduate Program in Health Sciences - Parasitology Laboratory, Federal Univesity of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Luciana Farias da Costa de Ávila
- Post-Graduate Program in Health Sciences - Parasitology Laboratory, Federal Univesity of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Maria Elisabeth Aires Berne
- Post-Graduate Program in Microbiology and Parasitology, Department of Microbiology and Parasitology, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Carlos James Scaini
- Post-Graduate Program in Health Sciences - Parasitology Laboratory, Federal Univesity of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Angulo M, Ramos A, Reyes-Becerril M, Guerra K, Monreal-Escalante E, Angulo C. Probiotic Debaryomyces hansenii CBS 8339 yeast enhanced immune responses in mice. 3 Biotech 2023; 13:28. [PMID: 36590244 PMCID: PMC9797638 DOI: 10.1007/s13205-022-03442-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022] Open
Abstract
This study aimed to examine the effect of Debaryomyces hansenii CBS 8339 on innate immune responses in mice. Thirty BALB/c mice were randomly treated with phosphate buffered saline (PBS) (control) and two D. hansenii (Dh) doses: Dh 10ˆ6 CFU (colony forming units) and Dh 10ˆ8 CFU daily for 15 days. Spleen, blood, and gut samples were taken on days 7 and 15. Mouse splenocytes were isolated and challenged with Escherichia coli. Immunological assays and immune-related gene expressions were performed. Serum was obtained from blood for total IgA and IgG antibody titer determination. Gut samples were taken for yeast colonization assessment. Phagocytosis, respiratory burst activity, and nitric oxide production in mice were mainly enhanced (p < 0.05) upon 7 days of D. hansenii intake at a concentration of 10ˆ8 CFU before and after bacterial challenge. Moreover, oral D. hansenii in mice upregulated (p < 0.05) gene expression of pro-inflammatory cytokines (INF-γ, IL-6 and IL-1β) before or after E. coli challenge on day 7 but downregulated (p < 0.05) on day 15. Furthermore, total serum IgG and IgA titers were higher (p < 0.05) in Dh 10ˆ8 CFU at days 7 and 15, and only at day 7, respectively, than that in the other dose and control groups. Finally, D. hansenii was detected in the gut of mice that received the treatments, suggesting that yeast survived gastrointestinal transit. Altogether, a short period (7 days) of D. hansenii CBS 8339 oral delivery improved immune innate response on mice.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Abel Ramos
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Martha Reyes-Becerril
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Kevyn Guerra
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Elizabeth Monreal-Escalante
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Carlos Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| |
Collapse
|
7
|
Terto WDS, Moura MQD, Borchardt JL, Santos FDS, Avila LFDC, Pinheiro NB, Leite FPL, Villela MM, Berne MEA. Cyclosporine A increases the intensity of Toxocara canis infection in swiss mice. BRAZ J BIOL 2022; 82:e260199. [PMID: 36134869 DOI: 10.1590/1519-6984.260199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
Toxocariasis is a zoonotic disease of worldwide distribution. The connection between parasitic diseases and conditions that depress the immune system, such as the use of immunosuppressive drugs, has been studied. The purpose of this study was to evaluate the effect of Cyclosporine A (CsA) on the intensity of infection, humoral response and gene transcription of interleukins IL-4, IL-10 and IL-12 in mice experimentally infected with Toxocara canis. To this end, mice were divided into two groups treated with CsA (G1: 10 mg/Kg and G2: 50 mg/kg), the G3 and G4 group received PBS. After the last administration of the drug or PBS (orally every 48 hours for 15 days), groups G1, G2 and G3 were inoculated with 1200 eggs of T. canis. Was collected blood samples on days zero, 15 and 30 days post-inoculation (PI), for ELISA test and the mice were euthanized 30 days PI. The organs and striated muscle tissue were collected for the recovery of larvae. The splenocytes were analyzed by RT-PCR. The intensity of infection in the mice treated with 50 mg/kg of CsA was 65.5% higher than in the control group (p=0.001). An analysis of the kinetics of anti-Toxocara antibody revealed that the groups treated with CsA showed significantly higher mean levels of antibodies on day 15 PI. The transcription of the three tested interleukins showed no statistical difference between G2 and G3 (control). It was concluded that the immunosuppression triggered by CsA (50 mg/Kg) favored the establishment of a larger number of T. canis larvae without, however, altering immunoglobulin production and IL-4, IL-10 and IL-12 transcription on day 30 PI.
Collapse
Affiliation(s)
- W D S Terto
- Universidade Federal de Pelotas - UFPel, Institute of Biology, Department of Microbiology and Parasitology, Post-Graduate Program in Microbiology and Parasitology, University Campus of Capão do Leão, Pelotas, RS, Brasil
| | - M Q de Moura
- Universidade Federal de Pelotas - UFPel, Institute of Biology, Department of Microbiology and Parasitology, Post-Graduate Program in Microbiology and Parasitology, University Campus of Capão do Leão, Pelotas, RS, Brasil
| | - J L Borchardt
- Universidade Federal de Pelotas - UFPel, Institute of Biology, Department of Microbiology and Parasitology, Post-Graduate Program in Microbiology and Parasitology, University Campus of Capão do Leão, Pelotas, RS, Brasil
| | - F D S Santos
- Universidade Federal de Pelotas - UFPel, Institute of Biology, Department of Microbiology and Parasitology, Post-Graduate Program in Microbiology and Parasitology, University Campus of Capão do Leão, Pelotas, RS, Brasil
| | - L F da Costa Avila
- Universidade Federal do Rio Grande - FURG, Faculty of Medicine, Academic Area of the University Hospital, Post-Graduate Program in Health Sciences - Parasitology Laboratory, Rio Grande, RS, Brasil
| | - N B Pinheiro
- Universidade Federal de Pelotas - UFPel, Institute of Biology, Department of Microbiology and Parasitology, Post-Graduate Program in Microbiology and Parasitology, University Campus of Capão do Leão, Pelotas, RS, Brasil
| | - F P Leivas Leite
- Universidade Federal de Pelotas - UFPel, Biotechnology Center, Post-Graduate Program in biotechnology, University Campus of Capão do Leão, Pelotas, RS, Brasil
| | - M M Villela
- Universidade Federal de Pelotas - UFPel, Institute of Biology, Department of Microbiology and Parasitology, Post-Graduate Program in Microbiology and Parasitology, University Campus of Capão do Leão, Pelotas, RS, Brasil
| | - M E A Berne
- Universidade Federal de Pelotas - UFPel, Institute of Biology, Department of Microbiology and Parasitology, Post-Graduate Program in Microbiology and Parasitology, University Campus of Capão do Leão, Pelotas, RS, Brasil
| |
Collapse
|
8
|
In vitro and in vivo evaluation of Bacillus clausii against Schistosoma mansoni. Acta Trop 2022; 235:106669. [PMID: 36037981 DOI: 10.1016/j.actatropica.2022.106669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Experimental studies and clinical trials have been showing that probiotics are promising in the prevention and control of parasite infections. B. clausii, obtained from Enterogermina®, was cultured to obtain cell-free culture supernatant (CFS) and spores to evaluate its schistosomicidal effect in vitro and in vivo against Schistosoma mansoni, respectively. For in vitro and in vivo analysis mice were infected with 120 and 50 cercariae, respectively. Couples of adult worms, recovered on day 45 of infection, were exposed to CFS. The in vivo assay was performed for 100 days, where all animals were infected on the 30th day. Four experimental groups were formed, as follows: G1 - Saline solution from the 1st until the 100th day; G2 - B. clausii from the 1st until the 100th day; G3 - B. clausii from the 68th day (onset of oviposition) until the 100th day and G4 - PZQ (50 mg/Kg) from the 75th until the 79th day. In vitro, CFS of B. clausii does not caused mortality nor changed the motility on S. mansoni adult worms. G2 and G3 showed reduction of the 68.58 and 44.25% in the number of eggs eliminated in the feces and 34.29 and 53.6% and 22.8 and 48.49% the number of eggs trapped in the liver and intestine, respectively. Furthermore, in both therapeutic regimens G2 and G3, B. clausii increased the percentage of dead eggs in the intestinal tissue. B. clausii CFS, in vitro, does not showed action against S. mansoni and that treatment with B. clausii spores modulates favorably the parasitological parameters in the experimental infection of S. mansoni.
Collapse
|
9
|
Antiparasitic Action of Lactobacillus casei ATCC 393 and Lactobacillus paracasei CNCM Strains in CD-1 Mice Experimentally Infected with Trichinella britovi. Pathogens 2022; 11:pathogens11030296. [PMID: 35335620 PMCID: PMC8949586 DOI: 10.3390/pathogens11030296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Nematodes of the genus Trichinella are among the most widespread parasites of domestic and wild omnivores and predatory animals. The present study aimed to evaluate the antiparasitic effect of Lactobacillus casei ATCC 393 (original) and L. paracasei CNCM in CD-1 mice experimentally infected with Trichinella britovi. Four groups of 20 mice (10 females and 10 males/group) were used, with two control (C) groups and two experimental (E) groups, in which each animal received a daily oral dose of 100 µL of 105 CFU/mL probiotics in Ringer’s solution. On day 7, all mice (except the negative control group) were infected orally with Trichinella (100 larvae/animal) as well as the two probiotics. On day 9 post-infection (p.i.), 10 mice/group were euthanized, and the presence of adult parasites in the intestinal content and wall was tested. On day 32 p.i., 10 mice/group were euthanized, then trichinoscopy and artificial digestion were performed to assess the muscle infection with T. britovi. On day 9 p.i., the experimental group pretreated with L. casei ATCC 393 (6.3 ± 3.03) showed a significantly lower number of adult parasites in the intestinal wall compared with the positive control group (24.6 ± 4.78). Additionally, a significantly lower adult parasite count in the intestinal wall was registered in female mice pretreated with L. paracasei CNCM (7.4 ± 4.71) compared to female mice from the positive control (29.0 ± 5.17). No statistically relevant results were obtained concerning the male mice or the data obtained at 32 days p.i., irrespective of mice gender.
Collapse
|
10
|
Borchard JL, Conrad NL, Pinto NB, Moura MQD, Berne MEA, Leite FPL. Acute and chronic immunomodulatory response mechanisms against Toxocara canis larvae infection in mice. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINÁRIA 2022. [DOI: 10.1590/s1984-29612022056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract The objective of this work was to evaluate the early and late immunological modulation of an experimental infection of T. canis larvae in mice. Mice were infected with 100 infective larvae and euthanized at different period: 24, 48 hours post infection (HPI), 15- and 30 days post infection (DPI). The humoral response was evaluated by indirect ELISA. Quantitative RT–PCR (qPCR) was used to quantify the mRNA transcription of cytokines IL4, IL10, IL12 and Ym1 in the early and late infection periods. Infection with T. canis was able to generate specific total IgG at 15- and 30- DPI. Analyzing the IgG isotype revealed a significant differentiation for IgG1 compared with IgG2a, IgG2b and IgG3, characterizing a Th-2 response. Evaluating the gene transcription at the early phase of infection, higher transcription levels of IL10, IL4 and Ym1 and a downregulation of IL12 were observed. By the late phase, increased transcription levels of IL4, Ym1 and IL12 were observed, and downregulation of IL-10 transcription was observed. The data obtained suggest that during experimental infection with T. canis, the participation of the IL4, IL10, IL12 cytokines and Ym1 can play an important role in T. canis immunomodulation.
Collapse
|
11
|
Tao D, Zhong T, Pang W, Li X. Saccharomyces boulardii improves the behaviour and emotions of spastic cerebral palsy rats through the gut-brain axis pathway. BMC Neurosci 2021; 22:76. [PMID: 34876019 PMCID: PMC8653608 DOI: 10.1186/s12868-021-00679-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cerebral palsy (CP) is a kind of disability that influences motion, and children with CP also exhibit depression-like behaviour. Inflammation has been recognized as a contributor to CP and depression, and some studies suggest that the gut-brain axis may be a contributing factor. Our team observed that Saccharomyces boulardii (S. boulardii) could reduce the inflammatory level of rats with hyperbilirubinemia and improve abnormal behaviour. Both CP and depression are related to inflammation, and probiotics can improve depression by reducing inflammation. Therefore, we hypothesize that S. boulardii may improve the behaviour and emotions of spastic CP rats through the gut-brain axis pathway. METHODS Our new rat model was produced by resecting the cortex and subcortical white matter. Seventeen-day-old CP rats were exposed to S. boulardii or vehicle control by gastric gavage for 9 days, and different behavioural domains and general conditions were tested. Inflammation was assessed by measuring the inflammatory markers IL-6 and TNF-α. Hypothalamic-pituitary-adrenal (HPA) axis activity was assessed by measuring adrenocorticotropic hormone and corticosterone in the serum. Changes in the gut microbiome were detected by 16S rRNA. RESULTS The hemiplegic spastic CP rats we made with typical spastic paralysis exhibited depression-like behaviour. S. boulardii treatment of hemiplegic spastic CP rats improves behaviour and general conditions and significantly reduces the level of inflammation, decreases HPA axis activity, and increases gut microbiota diversity. CONCLUSIONS The model developed in this study mimics a hemiplegic spastic cerebral palsy. Damage to the cortex and subcortical white matter of 17-day-old Sprague-Dawley (SD) rats led to spastic CP-like behaviour, and the rats exhibited symptoms of depression-like behaviour. Our results indicate that S. boulardii might have potential in treating hemiplegic spastic CP rat models or as an add-on therapy via the gut-brain axis pathway.
Collapse
Affiliation(s)
- Deshuang Tao
- College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- Jiamusi Central Hospital, Jiamusi, Heilongjiang, China
| | - Tangwu Zhong
- College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wei Pang
- College of Rehab Medicine, Jiamusi University, Jiamusi, China
- Rehab Center for Child Cerebral Palsy, Jiamusi, Heilongjiang, China
- Institute of Pediatric Neurological Disorders, Jiamusi University, Jiamusi, China
| | - Xiaojie Li
- College of Rehab Medicine, Jiamusi University, Jiamusi, China.
- Rehab Center for Child Cerebral Palsy, Jiamusi, Heilongjiang, China.
- Institute of Pediatric Neurological Disorders, Jiamusi University, Jiamusi, China.
| |
Collapse
|
12
|
Cruz CS, Ricci MF, Vieira AT. Gut Microbiota Modulation as a Potential Target for the Treatment of Lung Infections. Front Pharmacol 2021; 12:724033. [PMID: 34557097 PMCID: PMC8453009 DOI: 10.3389/fphar.2021.724033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal and respiratory systems are colonized by a complex ecosystem of microorganisms called the microbiota. These microorganisms co-evolved over millions of years with the host, creating a symbiotic relationship that is fundamental for promoting host homeostasis by producing bioactive metabolites and antimicrobial molecules, and regulating the immune and inflammatory responses. Imbalance in the abundance, diversity, and function of the gut microbiota (known as dysbiosis) have been shown to increase host susceptibility to infections in the lungs, suggesting crosstalk between these organs. This crosstalk is now referred to as the gut-lung axis. Hence, the use of probiotics, prebiotics, and synbiotics for modulation of gut microbiota has been studied based on their effectiveness in reducing the duration and severity of respiratory tract infections, mainly owing to their effects on preventing pathogen colonization and modulating the immune system. This review discusses the role and responses of probiotics, prebiotics, and synbiotics in the gut-lung axis in the face of lung infections.
Collapse
Affiliation(s)
- Clênio Silva Cruz
- Laboratory of Microbiota and Immunomodulation (LMI), Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mayra Fernanda Ricci
- Laboratory of Microbiota and Immunomodulation (LMI), Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Angélica Thomaz Vieira
- Laboratory of Microbiota and Immunomodulation (LMI), Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Saracino MP, Vila CC, Baldi PC, González Maglio DH. Searching for the one(s): Using Probiotics as Anthelmintic Treatments. Front Pharmacol 2021; 12:714198. [PMID: 34434110 PMCID: PMC8381770 DOI: 10.3389/fphar.2021.714198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
Helminths are a major health concern as over one billion people are infected worldwide and, despite the multiple efforts made, there is still no effective human vaccine against them. The most important drugs used nowadays to control helminth infections belong to the benzimidazoles, imidazothiazoles (levamisole) and macrocyclic lactones (avermectins and milbemycins) families. However, in the last 20 years, many publications have revealed increasing anthelmintic resistance in livestock which is both an economical and a potential health problem, even though very few have reported similar findings in human populations. To deal with this worrying limitation of anthelmintic drugs, alternative treatments based on plant extracts or probiotics have been developed. Probiotics are defined by the Food and Agriculture Organization as live microorganisms, which, when consumed in adequate amounts, confer a health benefit to the host. It has been proven that probiotic microbes have the ability to exert an immunomodulatory effect both at the mucosa and the systemic level. The immune response against gastrointestinal helminths is characterized as a type 2 response, with high IgE levels, increased numbers and/or activity of Th2 cells, type 2 innate lymphoid cells, eosinophils, basophils, mast cells, and alternatively activated macrophages. The oral administration of probiotics may contribute to controlling gastrointestinal helminth infections since it has been demonstrated that these microorganisms stimulate dendritic cells to elicit a type 2 or regulatory immune response, among other effects on the host immune system. Here we review the current knowledge about the use of probiotic bacteria as anthelmintic therapy or as a complement to traditional anthelmintic treatments. Considering all research papers reviewed, we may conclude that the effect generated by probiotics on helminth infection depends not only on the parasite species, their stage and localization but also on the administration scheme.
Collapse
Affiliation(s)
- Maria Priscila Saracino
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Celeste Vila
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo César Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Horacio González Maglio
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Santos AC, Nogueira CEW, Dos Santos Suñe Moraes B, Müller V, Mousquer MA, Leite FPL. Immune response of adult horses, pregnant mares and foals to an experimental vaccine with recombinant EMA-2 protein of Theileria equi. Res Vet Sci 2021; 139:186-192. [PMID: 34343932 DOI: 10.1016/j.rvsc.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Equine theileriosis, caused by the Theileria equi protozoan, is a disease of worldwide importance. T. equi expresses surface proteins, of which the EMA-2 protein is a promising antigen for vaccine use. The aim of this study was to evaluate the immune response of adult horses, pregnant mares, and foals to an experimental EMA-2 protein of recombinant T. equi vaccine. A total of 46 horses were used in this study for vaccine trials and challenges. Twelve geldings, 14 pregnant mares, and 14 foals were divided into vaccinated and control groups. Total serum specific anti-rEMA-2 IgG, IgG subclasses, and transcription of cytokines related to the immune response were evaluated. For the vaccine challenge, six six-month-old foals were divided into vaccinated and control groups. For the challenge, blood from a horse with theileriosis was transfused to the foals. Geldings and pregnant mares maintained anti-rEMA-2 IgG levels at 130 and 140 days after vaccination, respectively. The most-detected IgG subclasses in vaccinated were IgG3/5, IgG4/7, and IgG1. IL2, IL10, IL12, IL17, IFN-γ, and TNF-α were the most-transcribed cytokines in PBMCs of vaccinated horses stimulated with rEMA-2. Challenge with T. equi demonstrated that vaccinated foals had an increase of 33% in total IgG four days after blood transfusion, while control foals had no significant response, suggesting that vaccine antibodies may have recognized EMA-2 protein of the native T. equi antigen. T. equi recombinant EMA-2 was shown to be a promising vaccine antigen by inducing humoral and cellular immunity similar to that observed in natural parasite infections.
Collapse
Affiliation(s)
- Alice Corrêa Santos
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, Rio Grande do Sul, Brazil
| | - Carlos Eduardo Wayne Nogueira
- Departamento de Clínicas Veterinária, Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bruna Dos Santos Suñe Moraes
- Departamento de Clínicas Veterinária, Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Vitória Müller
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, Rio Grande do Sul, Brazil
| | - Mariana Andrade Mousquer
- Departamento de Clínicas Veterinária, Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | |
Collapse
|
15
|
Santos FDS, Maubrigades LR, Gonçalves VS, Alves Ferreira MR, Brasil CL, Cunha RC, Conceição FR, Leite FPL. Immunomodulatory effect of short-term supplementation with Bacillus toyonensis BCT-7112 T and Saccharomyces boulardii CNCM I-745 in sheep vaccinated with Clostridium chauvoei. Vet Immunol Immunopathol 2021; 237:110272. [PMID: 34029878 DOI: 10.1016/j.vetimm.2021.110272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 01/05/2023]
Abstract
The bacterium Clostridium chauvoei is the causative agent of blackleg in livestock, and vaccination is the most effective means of prevention. The aim of this study was to assess the effect of short-term supplementation with Bacillus toyonensis and Saccharomyces boulardii on the immune response to a C. chauvoei vaccine in sheep. Sheep were vaccinated subcutaneously on day 0 and received a booster dose on day 21, with 2 mL of a commercial vaccine formulated with inactivated C. chauvoei bacterin adsorbed on aluminum hydroxide. Probiotics were orally administered B. toyonensis (3 × 108 cfu) and S. boulardii (3 × 108 cfu) over five days prior to the first and second doses of the vaccine. Sheep supplemented with B. toyonensis and S. boulardii showed significantly higher specific IgG, IgG1, and IgG2 titers (P<0.05), with approximately 24- and 14-fold increases in total IgG levels, respectively, than the nonsupplemented group. Peripheral blood mononuclear cells from the supplemented group had increased mRNA transcription levels of the IFN-γ, IL2, and Bcl6 genes. These results demonstrate an adjuvant effect of short-term supplementation with B. toyonensis and S. boulardii on the immune response against the C. chauvoei vaccine in sheep.
Collapse
Affiliation(s)
- Francisco Denis Souza Santos
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Lucas Reichert Maubrigades
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Vitória Sequeira Gonçalves
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Marcos Roberto Alves Ferreira
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Carolina Litchina Brasil
- Instituto de Biologia, Programa de Pós-Graduação em Parasitologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Rodrigo Casquero Cunha
- Faculdade de Veterinária, Programa de Pós-Graduação em Veterinária, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Fábio Pereira Leivas Leite
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil.
| |
Collapse
|
16
|
Chieffi PP, Zevallos Lescano SA, Rodrigues E Fonseca G, Dos Santos SV. Human Toxocariasis: 2010 to 2020 Contributions from Brazilian Researchers. Res Rep Trop Med 2021; 12:81-91. [PMID: 34040480 PMCID: PMC8141392 DOI: 10.2147/rrtm.s274733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
This is a review of the published contributions made by Brazilian researchers between 2010 and 2020 on the natural history of human toxocariasis and the effects of human toxocariasis on nonhuman paratenic hosts.
Collapse
Affiliation(s)
- Pedro Paulo Chieffi
- Department of Pathological Sciences, Santa Casa Medical School, São Paulo, Brazil
| | | | - Gabriela Rodrigues E Fonseca
- Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
17
|
Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol 2021; 12:616713. [PMID: 33897683 PMCID: PMC8060567 DOI: 10.3389/fimmu.2021.616713] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
In order to inhibit pathogenic complications and to enhance animal and poultry growth, antibiotics have been extensively used for many years. Antibiotics applications not only affect target pathogens but also intestinal beneficially microbes, inducing long-lasting changes in intestinal microbiota associated with diseases. The application of antibiotics also has many other side effects like, intestinal barrier dysfunction, antibiotics residues in foodstuffs, nephropathy, allergy, bone marrow toxicity, mutagenicity, reproductive disorders, hepatotoxicity carcinogenicity, and antibiotic-resistant bacteria, which greatly compromise the efficacy of antibiotics. Thus, the development of new antibiotics is necessary, while the search for antibiotic alternatives continues. Probiotics are considered the ideal antibiotic substitute; in recent years, probiotic research concerning their application during pathogenic infections in humans, aquaculture, poultry, and livestock industry, with emphasis on modulating the immune system of the host, has been attracting considerable interest. Hence, the adverse effects of antibiotics and remedial effects of probiotics during infectious diseases have become central points of focus among researchers. Probiotics are live microorganisms, and when given in adequate quantities, confer good health effects to the host through different mechanisms. Among them, the regulation of host immune response during pathogenic infections is one of the most important mechanisms. A number of studies have investigated different aspects of probiotics. In this review, we mainly summarize recent discoveries and discuss two important aspects: (1) the application of probiotics during pathogenic infections; and (2) their modulatory effects on the immune response of the host during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
18
|
Abstract
Probiotics have been shown to reduce the intensity of Toxocara canis infection in mice. However, larval transmission of this nematode also occurs via transplacental and transmammary routes. Thus, the aim of this study was to evaluate the effect of the Saccharomyces boulardii probiotic on the vertical transmission of T. canis in Swiss mice. The mice received 107S. boulardii colony-forming units per gram of food. The supplementation began 15 days before mating and was maintained throughout pregnancy and lactation. The animals were inoculated with 300 T. canis embryonated eggs on the 14th day of pregnancy. The presence of larvae was examined in the organs of the females and their offspring. The examined organs included the following: brain, liver, lungs, heart, kidneys, spleen, eye, skeletal muscle (carcass) and mammary glands of lactating females. There was a 42% (P = 0.041) reduction in the number of larvae transmitted to offspring in the group that received probiotic-supplemented food (GI). Additionally, there was a 50% reduction (P = 0.023) in the number of larvae found in the brains of lactating offspring in the GI group. These results reveal the potential of S. boulardii probiotic use as an auxiliary method of controlling visceral toxocariasis.
Collapse
|
19
|
Gonçalves VS, Santos FDS, Dos Santos Junior AG, Piraine REA, Rodrigues PRC, Brasil CL, Conrad NL, Leite FPL. Recombinant bovine IL17A acts as an adjuvant for bovine herpesvirus vaccine. Res Vet Sci 2021; 136:185-191. [PMID: 33677208 DOI: 10.1016/j.rvsc.2021.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/23/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022]
Abstract
The Bovine herpes virus type 5 glycoprotein D (gD) is essential for viral penetration into host permissive cells. The Herpes virus gD glycoprotein has been used for bovine immunization, being efficient in reduction of viral replication, shedding and clinical signs, however sterilizing immunity is still not achieved. Recombinant subunit vaccines are, in general, poorly immunogenic requiring additional adjuvant components. Interleukin 17A (IL17A) is a pro-inflammatory cytokine produced by T helper 17 cells that mediate mucosal immunity. IL17 production during vaccine-induced immunity is a requirement for mucosal protection to several agents. In this study, we investigated the potential of a recombinant IL17A to act as an adjuvant for a recombinant BoHV-5 glycoprotein D vaccine in cattle. Three cattle groups were divided as: group 1) rgD5 + alumen + rIL-17A; 2) rgD5 + alumen; and 3) PBS + alumen. The cattle (3 per group) received two doses of their respective vaccines at an interval of 21 days. The group that received rIL17 in its vaccine formulation at the 7th day after the prime immunization had significant higher levels of specific rgD-IgG than the alumen group. Addition of rIL17 also led to a significant fold increase in specific anti-rgD IgG and neutralizing antibodies to the virus, respectively, when compared with the alumen group. Cells stimulated with rIL17A responded with IL17 transcription, as well IL2, IL4, IL10, IL15, Bcl6 and CXCR5. Our findings suggest that the rIL17A has adjuvant potential for use in vaccines against BoHV-5 as well as potentially other pathogens of cattle.
Collapse
Affiliation(s)
- Vitória Sequeira Gonçalves
- Núcleo de Biotecnologia - Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Francisco Denis Souza Santos
- Núcleo de Biotecnologia - Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | | | - Renan Eugênio Araujo Piraine
- Núcleo de Biotecnologia - Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | | | - Carolina Litchina Brasil
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Neida Lucia Conrad
- Núcleo de Biotecnologia - Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Fábio Pereira Leivas Leite
- Núcleo de Biotecnologia - Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
20
|
Cadore PS, Walcher DL, Sousa NFGCD, Martins LHR, Hora VPD, Groll AV, Moura MQD, Berne MEA, Avila LFDCD, Scaini CJ. Protective effect of the probiotic Lactobacillus acidophilus ATCC 4356 in BALB/c mice infected with Toxocara canis. Rev Inst Med Trop Sao Paulo 2021; 63:e9. [PMID: 33533812 PMCID: PMC7845935 DOI: 10.1590/s1678-9946202163009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Human toxocariasis consists of chronic tissue parasitosis that is difficult to treat and control. This study aimed to evaluate the action of the probiotic Lactobacillus acidophilus ATCC 4356 on larvae of Toxocara canis and the effect of IFN-γ cytokine on parasite-host in vivo (1.109 CFU) and in vitro (1.106, 1.107, 1.108, 1.109 CFU) interactions. Four groups of six BALB/c mice were formed: G1 - L. acidophilus supplementation and T. canis infection; G2 - T. canis infection; G3 - L. acidophilus supplementation; and G4 - PBS administration. Mice were intragastrically suplemented with probiotics for 15 days before inoculation and 48 h after inoculation with 100 T. canis eggs. The inoculation of T. canis was also perfomed intragastrically. The recovery of larvae took place through digestion of liver and lung tissues; the evaluation of IFN-γ gene transcription in leukocytes was performed by qPCR. The in vitro test consisted of incubating the probiotic with T. canis larvae. The supplementation of probiotics produced a reduction of 57.7% (p = 0.025) in the intensity of infection of T. canis larvae in mice, whereas in the in vitro test, there was no larvicidal effect. In addition, a decrease in the IFN-γ gene transcription was observed in both, T. canis-infected and uninfected mice, regardless of whether or not they received supplementation. The probiotic L. acidophilus ATCC 4356 reduced T. canis infection intensity in mice, however, the probiotic did not have a direct effect on larvae, demonstrating the need of interaction with the host for the beneficial effect of the probiotic to occur. Yet, the proinflammatory cytokine IFN-γ did not apparently contributed to the observed beneficial effect of probiotics.
Collapse
Affiliation(s)
- Priscila Silva Cadore
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| | - Débora Liliane Walcher
- Universidade Federal de Pelotas, Departamento de Microbiologia e Parasitologia, Programa de Pós-Graduação em Parasitologia, Pelotas, Rio Grande do Sul, Brazil
| | | | - Lourdes Helena Rodrigues Martins
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| | - Vanusa Pousada da Hora
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| | - Andrea Von Groll
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| | - Micaele Quintana de Moura
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| | - Maria Elisabeth Aires Berne
- Universidade Federal de Pelotas, Departamento de Microbiologia e Parasitologia, Programa de Pós-Graduação em Parasitologia, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana Farias da Costa de Avila
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| | - Carlos James Scaini
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Probiotics Modulate Tilapia Resistance and Immune Response against Tilapia Lake Virus Infection. Pathogens 2020; 9:pathogens9110919. [PMID: 33172079 PMCID: PMC7694748 DOI: 10.3390/pathogens9110919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 11/23/2022] Open
Abstract
Tilapia lake virus (TiLV) causes an emerging viral disease associated with high mortality and economic damage in tilapia farming around the world. The use of probiotics in aquaculture has been suggested as an alternative to antibiotics and drugs to reduce the negative impact of bacterial and viral infections. In this study, we investigate the effect of probiotic Bacillus spp. supplementation on mortality, viral load, and expression of immune-related genes in red hybrid tilapia (Oreochromis spp.) upon TiLV infection. Fish were divided into three groups, and fed with: control diet, 0.5% probiotics-supplemented diet, and 1% probiotics-supplemented diet. After 21 days of experimental feeding, the three groups were infected with TiLV and monitored for mortality and growth performances, while organs were sampled at different time points to measure viral load and the transcription modulation of immune response markers. No significant difference was found among the groups in terms of weight gain (WG), average daily gain (ADG), feed efficiency (FE), or feed conversion ratio (FCR). A lower cumulative mortality was retrieved from fish fed 0.5% and 1% probiotics (25% and 24%, respectively), compared to the control group (32%). Moreover, fish fed with 1% probiotic diet had a significantly lower viral load, than those fed with 0.5% probiotic and control diet at 5, 6, 9, and 12 days post infection-challenge (dpc). The expression patterns of immune-related genes, including il-8 (also known as CXCL8), ifn-γ, irf-3, mx, rsad-2 (also known as VIPERIN) showed significant upregulation upon probiotic treatment during the peak of TiLV pathogenesis (between 9 and 12 dpc) and during most of the study period in fish fed with 1% probiotics-supplemented diet. Taken together, these findings indicate that dietary supplementation using Bacillus spp. probiotics may have beneficial effects to strengthen tilapia immunity and resistance against TiLV infections. Therefore, probiotic treatments may be preventively administered to reduce losses caused by this emerging viral infection in tilapia aquaculture.
Collapse
|
22
|
Pinto NB, Gaspar EB, Minho AP, Domingues R, de Moura MQ, Junior ASV, Capella GA, Dos Santos PA, da Costa CM, Leite FPL. Saccharomyces cerevisiae (YT001) supplementation for the control of Haemonchus contortus and modulation of the immune response of sheep. Benef Microbes 2020; 11:175-181. [PMID: 31990221 DOI: 10.3920/bm2019.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies aiming at the development and evaluation of alternative methods to minimise losses caused by the gastrointestinal nematode Haemonchus contortus are extremely important. Such research is essential, given the high morbidity rates among sheep and the significant mortality rates of lambs, allied to the low efficacy of commercial products for the control of this parasite. The purpose of this study was to evaluate the effect of the Saccharomyces cerevisiae (YT001 - YEASTECH) on the control of H. contortus and its modulation of the immune response in experimentally infected sheep. Eighteen sheep were divided into two groups. Group 1, the control group, comprised animals infected with H. contortus and supplemented with distilled water, while Group 2, the treated group, consisted of animals infected and supplemented with S. cerevisiae (400 million cfu/day of suspension for 49 days). The following parasitological parameters were evaluated: number of eggs per gram of faeces, number of infective larvae (L3) recovered per faecal culture, and parasitic load of the abomasum. The following immunological parameters were quantified: immunoglobulin (Ig)A in the mucous secretions and serum IgG; cytokines interleukin (IL)-4, IL-5 and IL-10; number of eosinophils in the abomasal mucosa and groups of cells positive for the markers: MHCII, CD4+CD25+, CD5+CD8+, WC4, CD5+CD4+, CD8+CD11b+ and CD5+WC1 by whole blood flow cytometry. The results revealed a significant decrease (P<0.05) in the number of larvae and significantly higher serum IgG levels (P<0.05) in the group supplemented with S. cerevisiae. The supplemented animals showed significantly larger numbers of eosinophils (P<0.05), as well as more cells positive for MHCII, CD4+CD25+, CD5+CD8+ than the control animals. This study confirmed the beneficial action of S. cerevisiae on the host immune response to H. contortus, as evidenced mainly by the smaller number of L3 recovered from the faeces of sheep supplemented with S. cerevisiae.
Collapse
Affiliation(s)
- N B Pinto
- Universidade Federal de Pelotas (UFPel), Campus Universitário, S/N, Caixa Postal 354, CEP 96010-900, Pelotas, RS, Brazil
| | - E B Gaspar
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sul, Sanidade Animal, Bage, RS, Brazil
| | - A P Minho
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sul, Sanidade Animal, Bage, RS, Brazil
| | - R Domingues
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sul, Sanidade Animal, Bage, RS, Brazil
| | - M Q de Moura
- Universidade Federal de Pelotas (UFPel), Campus Universitário, S/N, Caixa Postal 354, CEP 96010-900, Pelotas, RS, Brazil
| | | | - G A Capella
- Universidade Federal de Pelotas (UFPel), Campus Universitário, S/N, Caixa Postal 354, CEP 96010-900, Pelotas, RS, Brazil
| | - P A Dos Santos
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sul, Sanidade Animal, Bage, RS, Brazil
| | - C M da Costa
- Universidade Federal de Pelotas (UFPel), Campus Universitário, S/N, Caixa Postal 354, CEP 96010-900, Pelotas, RS, Brazil
| | - F P Leivas Leite
- Universidade Federal de Pelotas (UFPel), Campus Universitário, S/N, Caixa Postal 354, CEP 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
23
|
Saccharomyces boulardii reduces the mean intensity of infection in mice caused by the consumption of liver contaminated by Toxocara canis. Parasitol Res 2019; 119:1161-1165. [DOI: 10.1007/s00436-019-06567-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
|
24
|
Reda AA. Probiotics for the Control of Helminth Zoonosis. J Vet Med 2018; 2018:4178986. [PMID: 29666821 PMCID: PMC5831688 DOI: 10.1155/2018/4178986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
This paper is a comprehensive, concise, and an up to date review about probiotics effect and mechanisms against helminth infections of zoonotic importance. Zoonoses are diseases that can be transmitted from animals to humans in a reversible way. Despite zoonotic helminth diseases being still a challenge to the public health and the agriculture industries globally, they were still neglected in both human and veterinary medicine. Moreover, the increasing emergence of anthelmintic drug resistance constitutes failures of most disease control strategies, alarming for a quest to new alternative control approaches. Consequently, the use of beneficial microorganisms, probiotics, is becoming interesting for its prophylactic or therapeutic application against several diseases including helminths. Recent studies on probiotics against parasites and the interactions between bacteria, parasites, and the immune system in the gut draw much attention. However, the effects of these beneficial microorganisms in helminth infections remain largely unexplored. Therefore, the aim of the present review is to raise attention and to summarize recent findings on probiotics research against helminth parasites of zoonotic significance. State-of-the-art research on beneficial effects of bacteria on helminth infections and their proposed mechanisms of action is thoroughly discussed.
Collapse
Affiliation(s)
- Abadi Amare Reda
- School of Veterinary Medicine, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| |
Collapse
|
25
|
Santos F, Menegon Y, Piraine R, Rodrigues P, Cunha R, Leite FL. Bacillus toyonensis improves immune response in the mice vaccinated with recombinant antigen of bovine herpesvirus type 5. Benef Microbes 2018; 9:133-142. [DOI: 10.3920/bm2017.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Probiotics modulate the immune response and can increase the effectiveness of vaccines. Bacillus toyonensis is widely used as a probiotic in animal feed. The aim of this study was to assess the effects of B. toyonensis administration on the immune response to an experimental recombinant vaccine against bovine herpesvirus type 5 (BoHV-5) in mice. Mice were vaccinated with BoHV-5 recombinant glycoprotein D and supplemented with the probiotic B. toyonensis in two regimes: one group received the probiotic only during seven days prior to the initial vaccination while the second group was given the probiotic throughout the experimental period of seven weeks. Animals supplemented with probiotic B. toyonensis in two regimes showed an increase in total immunoglobulin (Ig)G, IgG1 and IgG2a levels in serum, in addition to higher titres of antibodies capable of neutralising the BoHV-5 virus than non-supplemented animals (P<0.05). Splenocytes from the supplemented mice had higher mRNA transcription levels of cytokines interleukin (IL)-4 and IL-12. These results show that the use of this probiotic may significantly contribute to the response elicited by recombinant vaccines, especially those that rely on increasing antibody and cell-mediated immune responses for efficacy. Further, the data support an immunomodulatory effect for probiotic B. toyonensis and imply that enhance effect on the immune response against a BoHV-5 recombinant vaccine in mice.
Collapse
Affiliation(s)
- F.D.S. Santos
- Faculdade de Veterinária, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - Y.A. Menegon
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - R.E.A. Piraine
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - P.R.C. Rodrigues
- Faculdade de Veterinária, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - R.C. Cunha
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - F.P. Leivas Leite
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| |
Collapse
|
26
|
Lactobacillus rhamnosus reduces parasite load on Toxocara canis experimental infection in mice, but has no effect on the parasite in vitro. Parasitol Res 2017; 117:597-602. [PMID: 29243027 DOI: 10.1007/s00436-017-5712-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Human toxocariasis is a neglected global parasitic zoonosis. The efficacy of drug treatment for this disease has been hindered by the biological complexity of the main etiological agent, the nematode Toxocara canis. Experimental studies have shown the potential of probiotics to promote a reduction in the parasite load of T. canis larvae. This study aimed to evaluate the effect of probiotic Lactobacillus rhamnosus ATCC 7469 on the parasite load of BALB/c mice with acute toxocariasis and evaluate the direct effect of this probiotic on T. canis larvae in vitro. In vivo administration of probiotics reduced the parasite load of T. canis larvae by 53.3% (p = 0.0018) during the early stage of infection in mice. However, when analyzed in vitro, it was observed that the probiotic did not present a deleterious effect on the larvae, as approximately 90% of these remained viable. These results demonstrate the potential of the probiotic L. rhamnosus in the reduction of T. canis larvae in BALB/c mice and suggest it could be used as an alternative means for the controlling of visceral toxocariasis. However, further studies are required to elucidate the mechanisms of action promoted by this probiotic.
Collapse
|
27
|
Evaluation of the transcription of interleukin-12 in the intestinal mucosa of mice subjected to experimental toxocariasis and supplemented with Saccharomyces boulardii. Vet Parasitol 2017; 242:59-62. [PMID: 28606326 DOI: 10.1016/j.vetpar.2017.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/01/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022]
|
28
|
Silveira MM, Conceição FR, Mendonça M, Moreira GMSG, Da Cunha CEP, Conrad NL, Oliveira PDD, Hartwig DD, De Leon PMM, Moreira ÂN. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis. J Med Microbiol 2017; 66:184-190. [DOI: 10.1099/jmm.0.000414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Marcelle Moura Silveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Fabricio Rochedo Conceição
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Garanhuns, Avenida Bom Pastor, S/N, Boa Vista, 55292-270 Garanhuns, PE, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Gustavo Marçal Schmidt Garcia Moreira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Carlos Eduardo Pouey Da Cunha
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Neida Lucia Conrad
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Patrícia Diaz de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Priscila Marques Moura De Leon
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Ângela Nunes Moreira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Campus Porto/Anglo, Rua Gomes Carneiro, 01 – Centro, Caixa Postal 354, 96010-610 Pelotas, RS, Brazil
| |
Collapse
|