1
|
Della Bella C, Medici C, D'Elios S, Benagiano M, Ludovisi A, Gomez-Morales MA, D'Elios MM, Bruschi F. Interleukin 17 producing T cell responses in human chronic trichinellosis-insight from a case study. Cytokine 2024; 184:156795. [PMID: 39492146 DOI: 10.1016/j.cyto.2024.156795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION We studied the cellular immune response in a patient infected since 10 months (along with other 51 people) during a trichinellosis outbreak caused by Trichinella spp. METHODS A 46 years old female resulted serologically positive for trichinellosis. We isolated peripheral blood mononuclear cells (PBMCs) and incubated them with excretory/secretory antigens (ESA) of Trichinella spiralis (T1) or Trichinella pseudospiralis (T4) to produce antigen specific T cell lines and clones, analysed for the phenotype (T helper or cytotoxic cells), for their T4 or T1 antigens specificity and for their cytokine profile (IFNγ, IL-17A, IL-4) by flow cytometry, thymidine incorporation assay and ELISpot. RESULTS The test performed using ESA from T1 or T4 has identified the species responsible for infection as T. pseudospiralis since the proliferative responses (evaluated by CFSE, Carboxyfluorescein succinimidyl ester, FACS analysis) was higher for T4 (72,8%) than T1 (23.6 %) antigen. The cell lines produced significant levels of IFNγ, IL-4 and IL-17A after stimulation. From the T cell line obtained in response to T1 ESA, as regards CD4 + cells, 12 % Th2, 22.8 % Th1, 6.6 % Th17, 6 % Th0, 2.2 % Th1/Th17 and 0.7 % Th2/Th17, were obtained. From the T1-specific TCL we generated 15 clones. From the TCL specific for T4 ESA, as regards CD4+, 15.2 % Th2, 27.1 % Th1, 3 % Th17, 10.3 %Th0, 1.9 % Th1/Th17 and 1 % Th2/ Th17 were obtained. From such TCL 4 clones were isolated, 1Th2, 1 Th1, 1 Th17, 1 Th1/Th17 and no Th0 nor Th2/Th17. CONCLUSIONS By cellular immunology techniques the species responsible of the infection resulted T. pseudospiralis, confirming the results previously obtained by serology. For the first time it was revealed in a human chronic infection the presence of Th17 cells.
Collapse
Affiliation(s)
- Chiara Della Bella
- Department of Molecular and Developmental Medicine, University of Siena, Italy; Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - Chiara Medici
- Department of Translational Research, N.T.M.S., Università di Pisa, Pisa, Italy
| | - Sofia D'Elios
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Marisa Benagiano
- Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - Alessandra Ludovisi
- Department of Infectious Diseases, Istituto Superiore di Sanità, European Union Reference Laboratory for Parasites, Rome, Italy
| | - Maria Angeles Gomez-Morales
- Department of Infectious Diseases, Istituto Superiore di Sanità, European Union Reference Laboratory for Parasites, Rome, Italy
| | - Mario M D'Elios
- Department of Molecular and Developmental Medicine, University of Siena, Italy; Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - Fabrizio Bruschi
- Department of Translational Research, N.T.M.S., Università di Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Atta SA, Fahmy ZH, Selim EAH, Aboushousha T, Mostafa RR. Effect of linex treatment on IFN-γ and IL-4 in mice infected with Trichinella. BMC Infect Dis 2024; 24:1360. [PMID: 39609767 PMCID: PMC11603642 DOI: 10.1186/s12879-024-10202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Trichinellosis is a zoonotic, foodborne parasitic infection causing muscle damage. This study investigated the potential therapeutic effects of the commercially available probiotic treatment Linex, both alone and in combination with Albendazole (ALB), on the intestinal and muscular stages of Trichinella spiralis infection in mice, assessing outcomes through parasitological, immunological, and histopathological measures. This study is the first to demonstrate the synergistic effect of combining the commercially available probiotic Linex with Albendazole for trichinellosis treatment. By enhancing both parasitological and immunological outcomes, this combined therapy not only significantly reduces parasite burden but also modulates the immune response, shifting it toward a protective Th1 profile. In parasitological terms, the highest adult and larval count reduction was observed in combined Linex and Albendazole treatment (100%, 97.7%) respectively. Lesser percentage of reduction were recorded in Linex alone therapy (43.2%, 88.4%) respectively. Histopathologically there was amelioration of the inflammatory cellular infiltration in all treated groups with best results in combined Linex and Albendazole treatment. Immunologically, serum IFN-γ levels increased significantly in all treated groups with highest levels in combined Linex and Albendazole treatment, while IL-4 and IL-13 level decreased significantly in all treated groups with best results observed in Linex alone treatment. To conclude; combined Linex and Albendazole treatment of mice infected with T. spirals could ameliorate the infection and improve the immune response.
Collapse
Affiliation(s)
- Shimaa Attia Atta
- Department of Immunology, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Zeinab H Fahmy
- Department of Parasitology, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Eman A H Selim
- Department of Parasitology, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Reham Refaat Mostafa
- Departments of Medical Parasitology Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
3
|
Xing Z, Liu S, He X. Critical and diverse role of alarmin cytokines in parasitic infections. Front Cell Infect Microbiol 2024; 14:1418500. [PMID: 39559705 PMCID: PMC11570582 DOI: 10.3389/fcimb.2024.1418500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Alarmin cytokines including IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) function as danger signals to trigger host immunity in response to tissue injury caused by pathogenic factors such as parasitic infections. Parasitic diseases also provide an excellent context to study their functions and mechanisms. Numerous studies have indicated that alarmin cytokine released by non-immune cells such as epithelial and stromal cells induce the hosts to initiate a type 2 immunity that drives parasite expulsion but also host pathology such as tissue injury and fibrosis. By contrast, alarmin cytokines especially IL-33 derived from immune cells such as dendritic cells may elicit an immuno-suppressive milieu that promotes host tolerance to parasites. Additionally, the role of alarmin cytokines in parasite infections is reported to depend on species of parasites, cellular source of alarmin cytokines, and immune microenvironment, all of which is relevant to the parasitic sites or organs. This narrative review aims to provide information on the crucial and diverse role of alarmin cytokines in parasitic infections involved in different organs including intestine, lung, liver and brain.
Collapse
Affiliation(s)
- Zhou Xing
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Suiyi Liu
- Department of Medical Engineering, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xing He
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Abd-ELrahman SM, Dyab AK, Mahmoud AES, Mohamed SM, Fouad AM, Gareh A, Asseri J, Dahran N, Alzaylaee H, Albisihi HM, Abd Elrahman AM, Alsharif FM, Mostafa H, Hamad N, Elmahallawy EK, Elossily NA. Therapeutic effects of myrrh extract and myrrh-based silver nanoparticles on Trichinella spiralis-infected mice: parasitological, histopathological, and immunological (IFN-γ, IL-10, and MMP-9) investigations. Front Vet Sci 2024; 11:1433964. [PMID: 39421828 PMCID: PMC11483346 DOI: 10.3389/fvets.2024.1433964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/07/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Trichinellosis, caused by Trichinella spiralis (T. spiralis), remains a prevalent parasitic zoonosis. Developing new drugs targeting and understanding the immune response against the infection is imperative. Previous research has inadequately explored the efficacy of crude myrrh extract and myrrh-based silver nanoparticles (AgNPs) against trichinellosis, as well as their impact on histopathological, and immunological factors. Methods This study evaluated the effects of silver nanoparticles biosynthesized using myrrh, crude myrrh extracts, and albendazole on the intestinal phase of T. spiralis. It also examined the associated histopathological changes and alterations in key immunological markers, including Interferon-gamma (IFN-γ), Interleukin-10 (IL-10), and Matrix Metalloproteinase-9 (MMP-9). Five groups of 12 mice were allocated as follows: group 1: non-infected, non-treated (negative control), group 2: infected, non-treated (positive control), group 3: infected and treated with biosynthesized silver nanoparticles (40 μg/mL), group 4: infected and treated with myrrh crude extract (800 mg/kg), and group 5: infected and treated with albendazole (50 mg/kg). Treatment was orally administered starting on the 2nd day post-infection and continued for three successive days. Mice of all groups were euthanized on the 6th day post-infection, and the intestine of each was isolated for parasitological, histopathological, and immunohistochemistry evaluation of MMP-9, as well as assessment of cytokines level (IFN-γ and IL-10 gene expressions) via Real-time PCR technique. Results The present study showed a considerable reduction in adult worm count among the treated groups. The mortality rates of adult worms were 88.64% in the silver nanoparticles treated group, 85.17% in the myrrh crude extract group, and 94.07% in the albendazole-treated group. Histopathological examination revealed prominent alterations in the intestine of the infected non-treated mice, which were markedly restored by treatment. Immunohistochemical examination accompanied by significant reduction in MMP-9 expression in the infected mice treated with AgNPs compared to the infected non-treated group, reflecting the role of AgNPs in downgrading the inflammatory reaction in the intestine of infected mice. Conclusion Collectively, this study demonstrates the novel antiparasitic potential of silver nanoparticles biosynthesized with myrrh against T. spiralis in infected mice. The treatment was associated with moderate rise in IFN-γ gene expression and IL-10 expression, highlighting its therapeutic efficacy against T. spiralis.
Collapse
Affiliation(s)
| | - Ahmed Kamal Dyab
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Parasitology, School of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt
| | - Abeer El-sayed Mahmoud
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Shaymaa M. Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Alamira Marzouk Fouad
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Gareh
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Jamal Asseri
- Department of Biology, College of Science and Humanities, Shaqra University, Dawadmi, Saudi Arabia
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Hind Alzaylaee
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hayat M. Albisihi
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Fahd M. Alsharif
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Heba Mostafa
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nashwa Hamad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Nahed Ahmed Elossily
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Pu G, Li Y, Liu T, Li H, Wang L, Chen G, Cao S, Yin H, Amuda TO, Guo X, Luo X. mmu-miR-374b-5p modulated inflammatory factors via downregulation of C/EBP β/NF-κB signaling in Kupffer cells during Echinococcus multilocularis infection. Parasit Vectors 2024; 17:163. [PMID: 38553755 PMCID: PMC10981327 DOI: 10.1186/s13071-024-06238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Alveolar echinococcosis (AE) is an important infectious disease caused by the metacestode larvae of Echinococcus multilocularis, seriously threatening global public health security. Kupffer cells (KCs) play important roles in liver inflammatory response. However, their role in hepatic alveolar echinococcosis has not yet been fully elucidated. METHODS In this study, qRT-PCR was used to detect the expression level of miR-374b-5p in KCs. The target gene of miR-374b-5p was identified through luciferase reporter assays and loss of function and gains. Critical genes involved in NFκB signaling pathway were analyzed by qRT-PCR and western blot. RESULTS This study reported that miR-374b-5p was significantly upregulated in KCs during E. multilocularis infection and further showed that miR-374b-5p was able to bind to the 3'-UTR of the C/EBP β gene and suppressed its expression. The expression levels of NF-κBp65, p-NF-κBp65 and pro-inflammatory factors including iNOS, TNFα and IL6 were attenuated after overexpression of miR-374b-5p while enhanced after suppression of miR-374b-5p. However, the Arg1 expression level was promoted after overexpression of miR-374b-5p while suppressed after downregulation of miR-374b-5p. Additionally, increased protein levels of NF-κBp65 and p-NF-κBp65 were found in the C/EBP β-overexpressed KCs. CONCLUSIONS These results demonstrated that miR-374b-5p probably regulated the expression of inflammatory factors via C/EBP β/NF-κB signaling. This finding is helpful to explore the mechanism of inflammation regulation during E. multilocularis infection.
Collapse
Affiliation(s)
- Guiting Pu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Yanping Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Tingli Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Hong Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Liqun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Guoliang Chen
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Shanling Cao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Tharheer Oluwashola Amuda
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Xiaola Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China.
| | - Xuenong Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
6
|
Salama MA, Alabiad MA, Saleh AA. Impact of resveratrol and zinc on biomarkers of oxidative stress induced by Trichinella spiralis infection. J Helminthol 2023; 97:e100. [PMID: 38099459 DOI: 10.1017/s0022149x23000810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Trichinellosis is a re-emerging worldwide foodborne zoonosis. Oxidative stress is one of the most common detrimental effects caused by trichinellosis. In addition, Trichinella infection poses an infinite and major challenge to the host's immune system. Resistance and side effects limit the efficiency of the existing anti-trichinella medication. Given that concern, this work aimed to investigate the anti-helminthic, antioxidant, anti-inflammatory and immunomodulatory effects of resveratrol and zinc during both phases of Trichinella spiralis infection. Sixty-four Swiss albino mice were divided into four equal groups: non-infected control, infected control, infected and treated with resveratrol, and infected and treated with zinc. Animals were sacrificed on the 7th and 35th days post-infection for intestinal and muscular phase assessments. Drug efficacy was assessed by biochemical, parasitological, histopathological, immunological, and immunohistochemical assays. Resveratrol and zinc can be promising antiparasitic, antioxidant, anti-inflammatory, and immunomodulatory agents, as evidenced by the significant decrease in parasite burden, the significant improvement of liver and kidney function parameters, the increase in total antioxidant capacity (TAC), the reduction of malondialdehyde (MDA) level, the increase in nuclear factor (erythroid-derived 2)-like-2 factor expression, and the improvement in histopathological findings. Moreover, both drugs enhanced the immune system and restored the disturbed immune balance by increasing the interleukin 12 (IL-12) level. In conclusion, resveratrol and zinc provide protection for the host against oxidative harm and the detrimental effects produced by the host's defense response during Trichinella spiralis infection, making them promising natural alternatives for the treatment of trichinellosis.
Collapse
Affiliation(s)
- M A Salama
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Egypt
| | - M A Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | - A A Saleh
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
7
|
Wang N, Wang JY, Pan TX, Jiang YL, Huang HB, Yang WT, Shi CW, Wang JZ, Wang D, Zhao DD, Sun LM, Yang GL, Wang CF. Oral vaccination with attenuated Salmonella encoding the Trichinella spiralis 43-kDa protein elicits protective immunity in BALB/c mice. Acta Trop 2021; 222:106071. [PMID: 34331898 DOI: 10.1016/j.actatropica.2021.106071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/02/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
A vaccine against Trichinella spiralis infection is urgently needed to interrupt its transmission from domestic animals to humans. However, no vaccine against T. spiralis is currently available. Our previous study demonstrated that the use of the 43-kDa glycoprotein present in excretory-secretory (ES) proteins of muscle larvae (ML) as an intramuscular DNA vaccine led to a 52.1% protection rate against T. spiralis infection. Attenuated Salmonella strains have the advantage of eliciting mucosal immunity, which is important for controlling T. spiralis infections at the intestinal stage and can be provided as vaccines via oral or intranasal routes. Therefore, in this study, complete 43-kDa glycoprotein (Ts43) sequences of T. spiralis were cloned into the vector pYA3681, and the recombinant plasmid pYA3681-Ts43 was transformed into the attenuated Salmonella typhimurium strain χ11802. The results showed that oral vaccination of mice with attenuated Salmonella carrying the recombinant plasmid pYA3681-Ts43 induced an evident elevation of the local intestinal mucosal sIgA and serum IgG antibody responses. The flow cytometry results showed that the percentages of CD4+ T cells and secreted IFN-γ, IL-4, and IL-17A in CD4+ T cells were significantly increased in the spleen and mesenteric lymph node (MLN) lymphocytes of the vaccinated groups. In addition, increased levels of the IFN-γ, IL-4, and IL-17A cytokines were also observed in the serum of the immunized groups. The above immune response results in the immunized groups demonstrated that protective immunity was elicited in this study. Finally, vaccinated mice demonstrated a significant 45.9% reduction in ML burden after infection with T. spiralis. This study demonstrated that oral vaccination with Ts43 delivered by attenuated Salmonella elicited local and systemic concurrent Th1/Th2/Th17 immune responses and provided partial protection against T. spiralis infection in BALB/c mice. This is a prospective strategy for the prevention and control of trichinellosis.
Collapse
|
8
|
Muñoz-Carrillo JL, Vargas-Barboza JM, Villalobos-Gutiérrez PT, Flores-De La Torre JA, Vazquez-Alcaraz SJ, Gutiérrez-Coronado O. Effect of treatment with resiniferatoxin in an experimental model of pulpal inflammatory in mice. Int Endod J 2021; 54:2099-2112. [PMID: 34375451 DOI: 10.1111/iej.13606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022]
Abstract
AIM To evaluate whether treatment with resiniferatoxin (RTX) is capable of lowering the plasma levels of PGE2 and TNF-α, as well as histopathological parameters in inflammation of pulp tissue in a mouse experimental model. METHODOLOGY Ten groups of six BALB/c mice were formed as follows: healthy group (HC ), healthy group treated with RTX (HRTX ), two groups with pulp inflammation at 14 and 18 hours (PI14 /PI18 ), six groups with pulpal inflammation plus treatment with Ibuprofen (IBU14 /IBU18 ), dexamethasone (DEX14 /DEX18 ) and resiniferatoxin (RTX14 /RTX18 ) at 14 and 18 hours, respectively. Pulpal inflammation was induced through occlusal exposure of the pulp of the maxillary first molar. The plasma levels of PGE2 and TNF-α and the histological parameters of the pulp tissue of the HC and HRTX groups were evaluated at the time of acquiring the animals. In the other groups, the plasma levels of PGE2 and TNF-α and the histopathological parameters were evaluated at 14 and 18 hours after pulp damage. Plasma levels of PGE2 and TNF-α were quantified by ELISA, and the histopathological parameters were evaluated by H/E staining. Statistical significance was determined by one-way analysis of variance (ANOVA) to test for overall differences between group means. RESULTS A significant increase (*p < .05) in plasma levels of PGE2 and TNF-α occurred 14 and 18 hours after pulp damage. In addition, treatment with RTX significantly decreased (*p < .05) the plasma levels of PGE2 and TNF-α at 14 and 18 hours after pulp damage, as well as the infiltrate of inflammatory cells at 18 hours after pulp damage, similarly to treatment with ibuprofen and dexamethasone. CONCLUSION It was possible to detect systemic levels of PGE2 and TNF-α at 14 and 18 hours after pulp damage. Likewise, treatment with RTX was associated with an anti-inflammatory effect similar to treatment with ibuprofen and dexamethasone. These findings place resiniferatoxin as a therapeutic alternative in the treatment of inflammatory diseases in Dentistry.
Collapse
Affiliation(s)
- José Luis Muñoz-Carrillo
- Laboratory of Basic Sciences, Faculty of Odontology, School of Biomedical Sciences, Cuauhtémoc University Aguascalientes, Aguascalientes, México
| | - Jazmín Monserrat Vargas-Barboza
- Laboratory of Basic Sciences, Faculty of Odontology, School of Biomedical Sciences, Cuauhtémoc University Aguascalientes, Aguascalientes, México
| | - Paola Trinidad Villalobos-Gutiérrez
- Laboratory of Immunology, Department of Earth and Life Sciences, University Center of Lagos, University of Guadalajara, Lagos de Moreno, Jalisco, México
| | | | | | - Oscar Gutiérrez-Coronado
- Laboratory of Immunology, Department of Earth and Life Sciences, University Center of Lagos, University of Guadalajara, Lagos de Moreno, Jalisco, México
| |
Collapse
|
9
|
Fasciola gigantica tegumental calcium-binding EF-hand protein 4 exerts immunomodulatory effects on goat monocytes. Parasit Vectors 2021; 14:276. [PMID: 34022913 PMCID: PMC8141160 DOI: 10.1186/s13071-021-04784-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Background The liver fluke Fasciola gigantica secretes excretory-secretory proteins during infection to mediate its interaction with the host. In this study, we investigated the immunomodulatory effects of a recombinant tegumental calcium-binding EF-hand protein 4 of F. gigantica (rFg-CaBP4) on goat monocytes. Methods The rFg-CaBP4 protein was induced and purified by affinity chromatography. The immunogenic reaction of rFg-CaBP4 against specific antibodies was detected through western blot analysis. The binding of rFg-CaBP4 on surface of goat monocytes was visualized by immunofluorescence assay. The localization of CaBP4 within adult fluke structure was detected by immunohistochemical analysis. The cytokine transcription levels in response to rFg-CaBP4 were examined using ABI 7500 real-time PCR system. The expression of the major histocompatibility complex (MHC) class-II molecule (MHC-II) in response to rFg-CaBP4 protein was analyzed using Flow cytometry. Results The isopropyl-ß-D-thiogalactopyranoside-induced rFg-CaBP4 protein reacted with rat sera containing anti-rFg-CaBP4 polyclonal antibodies in a western blot analysis. The adhesion of rFg-CaBP4 to monocytes was visualized by immunofluorescence and laser scanning confocal microscopy. Immunohistochemical analysis localized native CaBP4 to the oral sucker, pharynx, genital pore, acetabulum and tegument of adult F. gigantica. Co-incubation of rFg-CaBP4 with concanavalin A-stimulated monocytes increased the transcription levels of interleukin (IL)-2, IL-4, interferon gamma and transforming growth factor-β. However, a reduction in the expression of IL-10 and no change in the expression of tumor necrosis factor-α were detected. Additionally, rFg-CaBP4-treated monocytes exhibited a marked increase in the expression of the major histocompatibility complex (MHC) class-II molecule (MHC-II) and a decrease in MHC-I expression, in a dose-dependent manner. Conclusions These findings provide additional evidence that calcium-binding EF-hand proteins play roles in host-parasite interaction. Further characterization of the immunomodulatory role of rFg-CaBP4 should expand our understanding of the strategies used by F. gigantica to evade the host immune responses. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04784-5.
Collapse
|
10
|
Muñoz-Carrillo JL, Gutiérrez-Coronado O, Muñoz-Escobedo JJ, Contreras-Cordero JF, Maldonado-Tapia C, Moreno-García MA. Resiniferatoxin promotes adult worm expulsion in Trichinella spiralis-infected rats by Th2 immune response modulation. Parasite Immunol 2021; 43:e12840. [PMID: 33914935 DOI: 10.1111/pim.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The immune response during T spiralis infection is characterized by an increase in eosinophils and mast cells, as well as Th2 cytokine production, such as interleukin (IL)-4, IL-10 and IL-13, promoting T spiralis expulsion from the host. However, this response damages the host, favouring the parasite survival. In the search for new pharmacological strategies that protect against T spiralis infection, a recent study showed that treatment with resiniferatoxin (RTX) modulates the Th1 cytokines production, reducing muscle parasite burden. OBJECTIVE To evaluate the effect of RTX treatment on the Th2 cytokines production, the number of eosinophils, mast cells and the intestinal expulsion of T spiralis. METHODS Serum levels of IL-4, IL-10 and IL-13 were quantified by ELISA; the number of eosinophils, mast cells and the adult worms of T spiralis in the small intestine was quantified. RESULTS RTX treatment increased serum levels of IL-4, IL-10 and IL-13, and it decreases intestinal eosinophilia, however, favours the mastocytosis, promoting T spiralis intestinal expulsion. CONCLUSIONS These findings suggest that RTX is capable to modulate the Th2 immune response, promoting T spiralis expulsion, which contributes to the defence against T spiralis infection, placing the RTX as a potential immunomodulatory drug.
Collapse
Affiliation(s)
- José Luis Muñoz-Carrillo
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, México.,Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza, México.,Laboratory of Basic Sciences, Faculty of Odontology, School of Biomedical Sciences, Cuauhtémoc University Aguascalientes, Aguascalientes, México
| | - Oscar Gutiérrez-Coronado
- Laboratory of Immunology, Department of Earth and Life Sciences, University Center of Los Lagos, University of Guadalajara, Lagos de Moreno, México
| | | | - Juan Francisco Contreras-Cordero
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza, México
| | - Claudia Maldonado-Tapia
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, México
| | - María Alejandra Moreno-García
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, México
| |
Collapse
|
11
|
Wang N, Bai X, Tang B, Yang Y, Wang X, Zhu H, Luo X, Yan H, Jia H, Liu M, Liu X. Primary characterization of the immune response in pigs infected with Trichinella spiralis. Vet Res 2020; 51:17. [PMID: 32085808 PMCID: PMC7035712 DOI: 10.1186/s13567-020-0741-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Trichinellosis, which is caused by Trichinella spiralis (T. spiralis), is a serious zoonosis. Pigs play an important role in the transmission of human trichinellosis. Characterizing the immune response to T. spiralis infection is key to elucidating host–parasite interactions. However, most studies on the immune response to T. spiralis infection have employed murine models. In this study, we investigated the immune response to T. spiralis infection in pigs. The results showed that the average numbers of larvae per gram (lpg) for the 100-muscle larvae (ML), 1000-ML, and 10 000-ML groups were 1.502, 35.947, and 398.811, respectively. The percentages of CD3+ T cells, B cells, CD4+ T cells, Treg cells, and Th17 cells were elevated in the infection groups compared to the control animals. In contrast, CD8+ T cell percentages were reduced after infection in the low-dose group. The number of neutrophils was increased at 3–17 days post-infection (dpi). Th1 cytokine IL-2 levels were significantly decreased at 7 dpi, and Th2 cytokine IL-4 levels were significantly elevated at 3 dpi. Treg cytokine IL-10 levels were significantly elevated between 7 dpi and 30 dpi. Th17 cytokine IL-17A levels were significantly increased beginning at 11 dpi. These results confirmed that pigs infected with T. spiralis predominantly induced Th2 and Treg immune responses, which suppress the Th1 immune responses. This study provides novel insights into the immune response of pigs infected with T. spiralis.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hongbin Yan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China.
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130000, China.
| |
Collapse
|
12
|
Huang H, Yao J, Liu K, Yang W, Wang G, Shi C, Jiang Y, Wang J, Kang Y, Wang D, Wang C, Yang G. Sanguinarine has anthelmintic activity against the enteral and parenteral phases of trichinella infection in experimentally infected mice. Acta Trop 2020; 201:105226. [PMID: 31634454 DOI: 10.1016/j.actatropica.2019.105226] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 12/16/2022]
Abstract
Trichinellosis is a zoonotic parasitic disease caused by Trichinella spiralis, and it is also a widely prevalent foodborne parasitic disease. At present, albendazole and benzimidazole are the most commonly used therapeutic drugs for the clinical treatment of trichinellosis, but they have many side effects. Sanguinarine is a benzophenanthridine alkaloid that has biological activity, such as antibacterial, antitumour and antiparasitic activities. Therefore, the present study aimed to evaluate the anti-Trichinella effect of sanguinarine in vivo and in vitro. The results showed that sanguinarine had a lethal effect on muscle larvae, adults and new-borne larvae in vitro. The damage to adults treated with sanguinarine was observed by scanning electron microscopy. Sanguinarine could significantly reduce the burden of worms in mice during the pre-adult, migrating larva and encysted larva stages. The ratio of intestinal villus to crypt (V/C) in mice treated with sanguinarine was significantly higher than that in non-treated control mice. Compared with the non-treated control group, the sanguinarine-treated group exhibited a significantly increased number of small intestine goblet cells. The level of reactive oxygen species (ROS) in the serum of mice treated with sanguinarine was significantly higher than that of the control group mice in the pre-adult and encysted larva stages. This study suggests that sanguinarine is a potential drug against trichinellosis.
Collapse
|
13
|
Chen D, Tian AL, Hou JL, Li JX, Tian X, Yuan XD, Li X, Elsheikha HM, Zhu XQ. The Multitasking Fasciola gigantica Cathepsin B Interferes With Various Functions of Goat Peripheral Blood Mononuclear Cells in vitro. Front Immunol 2019; 10:1707. [PMID: 31396222 PMCID: PMC6664072 DOI: 10.3389/fimmu.2019.01707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/08/2019] [Indexed: 01/14/2023] Open
Abstract
Cathepsin B, a lysosomal cysteine protease, is thought to be involved in the pathogenesis of Fasciola gigantica infection, but its exact role remains unclear. In the present study, a recombinant F. gigantica cathepsin B (rFgCatB) protein was expressed in the methylotrophic yeast Pichia pastoris. Western blot analysis confirmed the reactivity of the purified rFgCatB protein to serum from F. gigantica-infected goats. The effects of serial concentrations (10, 20, 40, 80, and 160 μg/ml) of rFgCatB on various functions of goat peripheral blood mononuclear cells (PBMCs) were examined. We demonstrated that rFgCatB protein can specifically bind to the surface of PBMCs. In addition, rFgCatB increased the expression of cytokines (IL-2, IL-4, IL-10, IL-17, TGF-β, and IFN-γ), and increased nitric oxide production and cell apoptosis, but reduced cell viability. These data show that rFgCatB can influence cellular and immunological functions of goat PBMCs. Further characterization of the posttranslational modification and assessment of rFgCatB in immunogenicity studies is warranted.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie-Xi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XiaoWei Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Dan Yuan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
14
|
Muñoz-Carrillo JL, Muñoz-López JL, Muñoz-Escobedo JJ, Maldonado-Tapia C, Gutiérrez-Coronado O, Contreras-Cordero JF, Moreno-García MA. Therapeutic Effects of Resiniferatoxin Related with Immunological Responses for Intestinal Inflammation in Trichinellosis. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:587-599. [PMID: 29320813 PMCID: PMC5776891 DOI: 10.3347/kjp.2017.55.6.587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/22/2017] [Accepted: 11/12/2017] [Indexed: 01/06/2023]
Abstract
The immune response against Trichinella spiralis at the intestinal level depends on the CD4+ T cells, which can both suppress or promote the inflammatory response through the synthesis of diverse cytokines. During the intestinal phase, the immune response is mixed (Th1/Th2) with the initial predominance of the Th1 response and the subsequent domination of Th2 response, which favor the development of intestinal pathology. In this context, the glucocorticoids (GC) are the pharmacotherapy for the intestinal inflammatory response in trichinellosis. However, its therapeutic use is limited, since studies have shown that treatment with GC suppresses the host immune system, favoring T. spiralis infection. In the search for novel pharmacological strategies that inhibit the Th1 immune response (proinflammatory) and assist the host against T. spiralis infection, recent studies showed that resiniferatoxin (RTX) had anti-inflammatory activity, which decreased the serum levels of IL-12, INF-γ, IL-1β, TNF-α, NO, and PGE2, as well the number of eosinophils in the blood, associated with decreased intestinal pathology and muscle parasite burden. These researches demonstrate that RTX is capable to inhibit the production of Th1 cytokines, contributing to the defense against T. spiralis infection, which places it as a new potential drug modulator of the immune response.
Collapse
Affiliation(s)
- José Luis Muñoz-Carrillo
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Zacatecas, México.,Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza, Nuevo León, México
| | | | | | - Claudia Maldonado-Tapia
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Zacatecas, México
| | - Oscar Gutiérrez-Coronado
- Laboratory of Immunology, Department of Earth and Life Sciences, University Center of Los Lagos, University of Guadalajara, Lagos de Moreno, Jalisco, México
| | - Juan Francisco Contreras-Cordero
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolás de los Garza, Nuevo León, México
| | - María Alejandra Moreno-García
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Zacatecas, México
| |
Collapse
|
15
|
Ding J, Bai X, Wang X, Shi H, Cai X, Luo X, Liu M, Liu X. Immune Cell Responses and Cytokine Profile in Intestines of Mice Infected with Trichinella spiralis. Front Microbiol 2017; 8:2069. [PMID: 29163382 PMCID: PMC5671581 DOI: 10.3389/fmicb.2017.02069] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022] Open
Abstract
The intestinal phase is critical for trichinellosis caused by Trichinella spiralis (T. spiralis), as it determines both process and consequences of the disease. Several previous studies have reported that T. spiralis induces the initial predominance of a Th1 response during the intestine stage and a subsequent predominance of a Th2 response during the muscle stage. In the present study, immune cells and cytokine profile were investigated in the intestine of mice infected with T. spiralis. The results showed that the number of eosinophils, goblet cells, mucosal mast cells, and 33D1+ dendritic cells (DCs) increased during the intestinal phase of the infection. Among these, eosinophils, goblet cells, and mucosal mast cells continued to increase until 17 days post infection (dpi), and the number of 33D1+ DCs increased compared to wild type; however, it did not change with the days of infection. The mRNA and protein levels of Th1 cytokines IL-2, IL-12, and IFN-γ and the Th2 cytokines IL-4, IL-5, IL-10, IL-13, and TGF-β were all increased in the tissues of the small intestine in infected mice; however, in general, Th2 cytokines increased more than Th1 cytokines. In conclusion, our findings suggest that T. spiralis infection can induce an increase of small intestine mucosal immune cells and add further evidence to show that the intestinal mucosal immune system of infected mice was induced toward mixed Th1/Th2 phenotypes with the predominance of Th2 response at the early stage of infection.
Collapse
Affiliation(s)
- Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haining Shi
- Mucosal Immunology Laboratory, Pediatric Gastroenterology Unit, Massachusetts General Hospital East, Boston, MA, United States
| | - Xuepeng Cai
- China Institute of Veterinary Drugs Control, Beijing, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|