1
|
Tang C, Zhang Y. Detailed role of Let-7e in human diseases. Pathol Res Pract 2024; 260:155436. [PMID: 39018928 DOI: 10.1016/j.prp.2024.155436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
As part of the epigenetic machinery, microRNAs (miRNAs) are extensively utilized by eukaryotes. By modulating gene expression in a variety of ways, these short RNAs mediate crucial physiological processes. This suggests that abnormalities in miRNA biogenesis and expression can be traced back to a variety of diseases. In addition, miRNAs are promising clinical candidates, especially for preclinical diagnosis. The Let family of miRNAs was one of the first to be discovered. As a prominent member of this category, extensive research has been conducted on Let-7e. The vast majority of evidence indicates an association between let-7e dysregulation and the onset and progression of disease, including malignancies. Because their effect depends on the genetic profile of disease and the affected tissue, different miRNAs play diverse roles in various diseases. However, what counts in miRNA studies is that just one miRNA may target numerous mRNAs in a cell at the exact time, therefore summarizing the effect of a single miRNA in human diseases can provide better insights into disease detection and treatment. The goal of this study is to gain a deeper understanding of how let-7e functions in human cells so that it can be utilized more effectively in clinical settings for diagnosis, prognosis, and treatment. We have reviewed the research on let-7e, focusing on the molecular underpinnings of biological processes controlled by this miRNA that contribute to the development and etiology of numerous disorders.
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuling Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
2
|
Habibi B, Gholami S, Bagheri A, Fakhar M, Moradi A, Khazeei Tabari MA. Cystic echinococcosis microRNAs as potential noninvasive biomarkers: current insights and upcoming perspective. Expert Rev Mol Diagn 2023; 23:885-894. [PMID: 37553726 DOI: 10.1080/14737159.2023.2246367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Echinococcosis, also known as hydatidosis, is a zoonotic foodborne disease occurred by infection with the larvae of Echinococcus spp. which can lead to the development of hydatid cysts in various organs of the host. The diagnosis of echinococcosis remains challenging due to limited diagnostic tools. AREAS COVERED In recent years, microRNAs (miRNAs) have emerged as a promising biomarker for various infectious diseases, including those caused by helminths. Recent studies have identified several novel miRNAs in Echinococcus spp. shedding light on their essential roles in hydatid cyst host-parasite interactions. In this regard, several studies have shown that Echinococcus-derived miRNAs are present in biofluids such as serum and plasma of infected hosts. The detection of these miRNAs in the early stages of infection can serve as an early prognostic and diagnostic biomarker for echinococcosis. EXPERT OPINION The miRNAs specific to Echinococcus spp. show great potential as early diagnostic biomarkers for echinococcosis and can also provide insights into the pathogenesis of this disease. This review attempts to provide a comprehensive overview of Echinococcus-specific miRNAs, their use as early diagnostic biomarkers, and their function in host-parasite interactions.
Collapse
Affiliation(s)
- Bentolhoda Habibi
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirzad Gholami
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alimohammad Moradi
- Department of General Surgery Division of HPB and Transplantation Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Hadipour M, Fasihi Harandi M, Mirhendi H, Yousofi Darani H. Diagnosis of echinococcosis by detecting circulating cell-free DNA and miRNA. Expert Rev Mol Diagn 2023; 23:133-142. [PMID: 36756744 DOI: 10.1080/14737159.2023.2178903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Diagnosis of echinococcosis is difficult and usually performed based on clinical findings, imaging, and serological test. However, all of them have limitations, especially in follow-up approaches. AREAS COVERED Detection of cell-free DNA (cfDNA) and micro-RNA (miRNA) is currently a hot topic for diagnosis of echinococcosis diseases. For detecting cell-free DNA in echinococcosis patient's samples such as sera, some techniques are based on next-generation sequencing (NGS), DNA-deep sequencing, some are based on PCR-based methods, and a few works related to the detection of miRNA for the diagnosis of human echinococcosis. EXPERT OPINION In the detection of cell-free DNA in echinococcosis patient' samples, NGS and DNA-deep sequencing have shown high level of sensitivity, but are not suitable for routine clinical examination as they are expensive and inaccessible in the majority of endemic areas. However, PCR-based methods have shown a sensitivity of about 20-25%. To improve the sensitivity of these tests, improving the DNA extraction method, designing appropriate primers for detecting short-length fragments of circulating DNA, using a higher volume of a serum sample, and application of more sensitive PCR methods are recommended. In the field of miRNA detection, further works are recommended.
Collapse
Affiliation(s)
- Mahboubeh Hadipour
- Department of parasitology and mycology, Faculty of medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Majid Fasihi Harandi
- Research center for Hydatid disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Mirhendi
- Department of parasitology and mycology, Faculty of medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Hossein Yousofi Darani
- Department of parasitology and mycology, Faculty of medicine, Isfahan University of Medical sciences, Isfahan, Iran
| |
Collapse
|
4
|
[Expression of miR-106b-5p in children with primary immune thrombocytopenia and its correlation with T cells]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:411-416. [PMID: 35527417 PMCID: PMC9044986 DOI: 10.7499/j.issn.1008-8830.2110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To study the expression level of plasma miR-106b-5p in primary immune thrombocytopenia (ITP) and its correlation with the levels of T helper 17 cell (Th17) and regulatory T cell (Treg) and the Th17/Treg ratio. METHODS A total of 79 children with ITP (ITP group) and 40 healthy children (control group) were selected as subjects. According to the treatment response, the 79 children with ITP were divided into three groups: complete response (n=40), partial response (n=18), and non-response (n=21). Quantitative real-time PCR was used to measure the expression level of miR-106b-5p. Flow cytometry was used to measure the frequencies of Th17 and Treg, and the Th17/Treg ratio was calculated. The correlation of the expression level of plasma miR-106b-5p with the frequencies of Th17 and Treg and the Th17/Treg ratio was analyzed. RESULTS Compared with the control group, the ITP group had significantly higher levels of miR-106b-5p, Th17, and Th17/Treg ratio (P<0.05) and a significantly lower level of Treg (P<0.05). After treatment, the ITP group had significant reductions in the levels of miR-106b-5p, Th17, and Th17/Treg ratio (P<0.05) and a significant increase in the level of Treg (P<0.05). Compared with the partial response and non-response groups, the complete response group had significantly lower levels of miR-106b-5p, Th17, and Th17/Treg ratio (P<0.05) and a significantly higher level of Treg (P<0.05). The correlation analysis showed that in the children with ITP, the expression level of plasma miR-106b-5p was positively correlated with the Th17 level and the Th17/Treg ratio (r=0.730 and 0.816 respectively; P<0.001) and was negatively correlated with the Treg level (r=-0.774, P<0.001). CONCLUSIONS A higher expression level of miR-106b-5p and Th17/Treg imbalance may be observed in children with ITP. The measurement of miR-106b-5p, Th17, Treg, and Th17/Treg ratio during treatment may be useful to the evaluation of treatment outcome in children with ITP.
Collapse
|
5
|
Yang S, Du X, Wang C, Zhang T, Xu S, Zhu Y, Lv Y, Zhao Y, Zhu M, Guo L, Zhao W. Coding and Noncoding RNA Expression Profiles of Spleen CD4 + T Lymphocytes in Mice with Echinococcosis. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9742461. [PMID: 35480082 PMCID: PMC9012641 DOI: 10.1155/2022/9742461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Cystic echinococcosis (CE) is a severe and neglected zoonotic disease that poses health and socioeconomic hazards. So far, the prevention and treatment of CE are far from meeting people's ideal expectations. Therefore, to gain insight into the prevention and diagnosis of CE, we explored the changes in RNA molecules and the biological processes and pathways involved in these RNA molecules as E. granulosus infects the host. Interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17A, and tumor necrosis factor (TNF)-α levels in peripheral blood serum of E. granulosus infected and uninfected female BALB/c mice were measured using the cytometric bead array mouse Th1/Th2/Th17 cytokine kit. mRNA, microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) profiles of spleen CD4+ T cells from the two groups of mice were analyzed using high-throughput sequencing and bioinformatics. The levels of IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17A, and TNF-α were significantly higher in the serum of the CE mice than in control mice (P < 0.01). In total, 1,758 known mRNAs, 37 miRNAs, 175 lncRNAs, and 22 circRNAs were differentially expressed between infected and uninfected mice (|fold change| ≥ 0.585, P < 0.05). These differentially expressed molecules are involved in chromosome composition, DNA/RNA metabolism, and gene expression in cell composition, biological function, and cell function. Moreover, closely related to the JAK/STAT signaling pathways, mitogen-activated protein kinase signaling pathways, P53 signaling pathways, PI3K/AKT signaling pathways, cell cycle, and metabolic pathways. E. granulosus infection significantly increased the levels of IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17A, and TNF-α in mouse peripheral blood of mice and significantly changed expression levels of various coding and noncoding RNAs. Further study of these trends and pathways may help clarify the pathogenesis of CE and provide new insights into the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Songhao Yang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Xiancai Du
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Chan Wang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Tingrui Zhang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Shimei Xu
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Center of Scientific Technology of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Yazhou Zhu
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Yongxue Lv
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Yinqi Zhao
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Center of Scientific Technology of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Mingxing Zhu
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Center of Scientific Technology of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Lingna Guo
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Center of Scientific Technology of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Wei Zhao
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| |
Collapse
|
6
|
Örsten S, Baysal İ, Yabanoglu-Ciftci S, Ciftci T, Ünal E, Akıncı D, Akyön Y, Akhan O. Can parasite-derived microRNAs differentiate active and inactive cystic echinococcosis patients? Parasitol Res 2021; 121:191-196. [PMID: 34811587 DOI: 10.1007/s00436-021-07382-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Cystic Echinococcosis (CE) is a neglected zoonotic disease caused by the metacestode form of Echinococcus granulosus sensu lato. Non-invasive imaging techniques, especially ultrasound, are primarily used for CE diagnosis. MicroRNAs (miRNAs) are small, non-coding RNA molecules that act as post-transcriptional regulators in various biological processes. After identification of parasite-derived miRNAs, these miRNAs are considered to be potential biomarkers for diagnosis and follow-up. The focus of this research is to compare the expression profiles of certain parasite-derived miRNAs in CE patients with active and inactive cysts as well as healthy controls. Parasite-derived miRNAs, egr-let-7-5p, egr-miR-71a-5p, and egr-miR-9-5p, of inactive CE patients were found to be differentially expressed with 3.74-, 2.72-, and 20.78-fold change (p < 0.05), respectively, when compared with active CE patients. In this study, we evaluated for the first time the expression profile of three parasite-derived miRNAs in the serum of CE patients to determine their potential to distinguish between active and inactive CE. It was concluded that serum levels of parasite-derived miRNAs, egr-let-7-5p and egr-miR-9-5p, could be promising new potential biomarkers for stage-specific diagnosis of CE. Further studies are needed with larger sample set to validate discriminating potential of these miRNAs.
Collapse
Affiliation(s)
- Serra Örsten
- Vocational School of Health Services, Hacettepe University, Ankara, Turkey.
| | - İpek Baysal
- Vocational School of Health Services, Hacettepe University, Ankara, Turkey
| | | | - Türkmen Ciftci
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Emre Ünal
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Devrim Akıncı
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yakut Akyön
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Okan Akhan
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|