1
|
Cao J, Hu J, Zhang B, Zhang Y, Wen Z, Wu Y, Hu Z, Zhou Z, Liu X, Hou S. Polymorphisms of FUT9 and its relationship with susceptibility towards DHAV-3 in Pekin duck. Gene 2025; 955:149417. [PMID: 40090531 DOI: 10.1016/j.gene.2025.149417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/03/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Duck viral hepatitis severely threatens the development of the duck industry, leading to economic losses every year. Using selected Pekin duck populations exhibiting varying resistance towards Duck Hepatitis A Virus type 3 (DHAV-3), screening for genetic variations, such as single nucleotide polymorphisms (SNP), associated with disease susceptibility will facilitate the breeding of Pekin ducks with enhanced disease resistance. The biological role of fucosyltransferases, which are a type of glycosyltransferase enzymes, is to catalyze the transfer of fucose to molecules such as oligosaccharides, glycoproteins and glycolipids, which is crucial for maintaining immune function by promoting effective pathogen recognition and modulating immune responses through specific fucosylation patterns. Previous studies found that the expression level of the Fucosyltransferase 9 (FUT9) gene in the liver of resistant Pekin ducks was significantly higher than that in susceptible ducks, suggesting its potential association with disease resistance. However, the association between genetic variations in FUT9 and susceptibility to DHAV-3 in ducks remains unclear. This study aims to detect SNPs in the FUT9 gene and explore their relationships with disease mortality and susceptibility, the result will provide a scientific basis for developing effective control strategies in duck breeding. 242 Pekin ducks with varying resistance to DHAV-3 were used in this experiment. 12 SNPs were identified in the coding region of FUT9. And g.76953686 T > C and g.76954451C > T were significantly associated with susceptibility to DHAV-3 in Pekin ducks. The results indicate that variations in the FUT9 gene significantly influence the susceptibility of ducks towards DHAV-3, providing potential genetic markers for enhancing disease resistance breeding in Pekin ducks.
Collapse
Affiliation(s)
- Junting Cao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Hu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yunsheng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiguo Wen
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongbao Wu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Hu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhengkui Zhou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolin Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shuisheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Effect and Mechanism Analysis of Pig FUT8 Gene on Resistance to Escherichia coli F18 Infection. Int J Mol Sci 2022; 23:ijms232314713. [PMID: 36499043 PMCID: PMC9739813 DOI: 10.3390/ijms232314713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Post-weaning diarrhea caused by enterotoxigenic Escherichia coli F18 (E. coli F18) causes significant economic losses for pig producers. Fucosyltransferase 8 (FUT8) is a glycosyltransferase that catalyzes core fucosylation; however, its role in mediating the resistance to E. coli F18 infection in pigs remains unknown. In this study, we systematically verified the relationship between FUT8 expression and E. coli resistance. The results showed that FUT8 was expressed in all detected tissues of Meishan piglets and that its expression was significantly increased in the duodenum and jejunum of E. coli F18-sensitive individuals when compared to E. coli F18-resistant individuals. FUT8 expression increased after exposure to E. coli F18 (p < 0.05) and decreased significantly after LPS induction for 6 h (p < 0.01). Then, the IPEC-J2 stable cell line with FUT8 interference was constructed, and FUT8 knockdown decreased the adhesion of E. coli F18ac to IPEC-J2 cells (p < 0.05). Moreover, we performed a comparative transcriptome study of IPEC-J2 cells after FUT8 knockdown via RNA-seq. In addition, further expression verification demonstrated the significant effect of FUT8 on the glycosphingolipid biosynthesis and Toll-like signaling pathways. Moreover, the core promoter of FUT8, which was located at −1213 bp to −673 bp, was identified via luciferase assay. Interestingly, we found a 1 bp C base insertion mutation at the −774 bp region, which could clearly inhibit the transcriptional binding activity of C/EBPα to an FUT8 promoter. Therefore, it is speculated that FUT8 acts in a critical role in the process of E. coli infection; furthermore, the low expression of FUT8 is conducive to the enhancement of E. coli resistance in piglets. Our findings revealed the mechanism of pig FUT8 in regulating E. coli resistance, which provided a theoretical basis for the screening of E. coli resistance in Chinese local pig breeds.
Collapse
|
3
|
Yang L, Liu L, Cheng J, Wu Z, Bao W, Wu S. Association analysis of DNA methylation and the tissue/developmental expression of the FUT3 gene in Meishan pigs. Gene 2022; 851:147016. [DOI: 10.1016/j.gene.2022.147016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
|
4
|
Merino GA, Raad J, Bugnon LA, Yones C, Kamenetzky L, Claus J, Ariel F, Milone DH, Stegmayer G. Novel SARS-CoV-2 encoded small RNAs in the passage to humans. Bioinformatics 2021; 36:5571-5581. [PMID: 33244583 PMCID: PMC7717134 DOI: 10.1093/bioinformatics/btaa1002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/15/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Motivation The Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) has recently emerged as the responsible for the pandemic outbreak of the coronavirus disease (COVID-19). This virus is closely related to coronaviruses infecting bats and Malayan pangolins, species suspected to be an intermediate host in the passage to humans. Several genomic mutations affecting viral proteins have been identified, contributing to the understanding of the recent animal-to-human transmission. However, the capacity of SARS-CoV-2 to encode functional putative microRNAs (miRNAs) remains largely unexplored. Results We have used deep learning to discover 12 candidate stem-loop structures hidden in the viral protein-coding genome. Among the precursors, the expression of eight mature miRNAs-like sequences was confirmed in small RNA-seq data from SARS-CoV-2 infected human cells. Predicted miRNAs are likely to target a subset of human genes of which 109 are transcriptionally deregulated upon infection. Remarkably, 28 of those genes potentially targeted by SARS-CoV-2 miRNAs are down-regulated in infected human cells. Interestingly, most of them have been related to respiratory diseases and viral infection, including several afflictions previously associated with SARS-CoV-1 and SARS-CoV-2. The comparison of SARS-CoV-2 pre-miRNA sequences with those from bat and pangolin coronaviruses suggests that single nucleotide mutations could have helped its progenitors jumping inter-species boundaries, allowing the gain of novel mature miRNAs targeting human mRNAs. Our results suggest that the recent acquisition of novel miRNAs-like sequences in the SARS-CoV-2 genome may have contributed to modulate the transcriptional reprogramming of the new host upon infection.
Collapse
Affiliation(s)
- Gabriela A Merino
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina.,Bioengineering and Bioinformatics Research and Development Institute (IBB), FI-UNER, CONICET, Entre Ríos 3100, Argentina.,European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridgeshire CB101SD, UK
| | - Jonathan Raad
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Leandro A Bugnon
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Cristian Yones
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Laura Kamenetzky
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires 1121, Argentina.,Laboratorio de Genómica y Bioinformática de Patógenos, iB3, Instituto de Biociencias, Biotecnología y Biología traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Juan Claus
- Laboratorio de Virología, FBCB, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral (IAL), CONICET, FBCB, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Diego H Milone
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Georgina Stegmayer
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| |
Collapse
|
5
|
Cao J, Zhang Y, Chen Y, Liang S, Liu D, Fan W, Xu Y, Liu H, Zhou Z, Liu X, Hou S. Dynamic Transcriptome Reveals the Mechanism of Liver Injury Caused by DHAV-3 Infection in Pekin Duck. Front Immunol 2020; 11:568565. [PMID: 33240261 PMCID: PMC7677298 DOI: 10.3389/fimmu.2020.568565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/08/2020] [Indexed: 01/17/2023] Open
Abstract
Duck hepatitis A virus 3 (DHAV-3) is a wild endemic virus, which seriously endangers the duck industry in China. The present study aims to elucidate the mechanism of duck resistance to DHAV-3 infection. Both resistant and susceptible ducks were challenged with DHAV-3 in this experiment. The histopathological features and serum biochemical indices (ALT and AST) were analyzed to estimate liver injury status at 6, 12, 15, and 24 h post-infection (hpi). The dynamic transcriptomes of liver were analyzed to explain the molecular regulation mechanism in ducks against DHAV-3. The result showed that the liver injury in susceptible ducks was more serious than that in the resistant ducks throughout the four time points. A total of 2,127 differentially expressed genes (DEGs) were identified by comparing the transcriptome of the two populations. The expression levels of genes involved in innate immune response increased rapidly in susceptible ducks from 12 hpi. Similarly, the expression of genes involved in cytokine regulation also increased at the same time points, while the expression levels of these genes in resistant ducks remained similar between the various time points. KEGG enrichment analysis of the DEGs revealed that the genes involved in cytokine regulation and apoptosis were highly expressed in susceptible ducks than that in resistant ducks, suggesting that excessive cytokine storm and apoptosis may partially explain the mechanism of liver injury caused by DHAV-3 infection. Besides, we found that the FUT9 gene may contribute to resistance towards DHAV-3 in resistant ducklings. These findings will provide insight into duck resistance and susceptibility to DHAV-3 infection in the early phases, facilitate the development of a strategy for DHAV-3 prevention and treatment, and enhance genetic resistance via genetic selection in animal breeding.
Collapse
Affiliation(s)
- Junting Cao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Chen
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suyun Liang
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dapeng Liu
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlei Fan
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yaxi Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hehe Liu
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengkui Zhou
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolin Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shuisheng Hou
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
7
|
Increased Expression of Cell Surface SSEA-1 is Closely Associated with Naïve-Like Conversion from Human Deciduous Teeth Dental Pulp Cells-Derived iPS Cells. Int J Mol Sci 2019; 20:ijms20071651. [PMID: 30987116 PMCID: PMC6480091 DOI: 10.3390/ijms20071651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Stage-specific embryonic antigen 1 (SSEA-1) is an antigenic epitope (also called CD15 antigen) defined as a Lewis X carbohydrate structure and known to be expressed in murine embryonal carcinoma cells, mouse embryonic stem cells (ESCs), and murine and human germ cells, but not human ESCs/induced pluripotent stem cells (iPSCs). It is produced by α1,3-fucosyltransferase IX gene (FUT9), and F9 ECCs having a disrupted FUT9 locus by gene targeting are reported to exhibit loss of SSEA-1 expression on their cell surface. Mouse ESCs are pluripotent cells and therefore known as “naïve stem cells (NSCs).” In contrast, human ESCs/iPSCs are thought to be epiblast stem cells (EpiSCs) that are slightly more differentiated than NSCs. Recently, it has been demonstrated that treatment of EpiSCs with several reprograming-related drugs can convert EpiSCs to cells similar to NSCs, which led us to speculate that SSEA-1 may have been expressed in these NSC-like EpiSCs. Immunocytochemical staining of these cells with anti-SSEA-1 revealed increased expression of this epitope. RT-PCR analysis also confirmed increased expression of FUT9 transcripts as well as other stemness-related transcripts such as REX-1 (ZFP42). These results suggest that SSEA-1 can be an excellent marker for human NSCs.
Collapse
|
8
|
Kakizaki M, Watanabe R. IL-10 expression in pyramidal neurons after neuropathogenic coronaviral infection. Neuropathology 2017; 37:398-406. [PMID: 28493345 PMCID: PMC7167951 DOI: 10.1111/neup.12386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 02/04/2023]
Abstract
The apoptosis of pyramidal neurons in CA2 and CA3 subregions of the hippocampus is induced after infection with Mu-3 virus (Mu-3), a neuropathogenic strain of the JHM virus (JHMV), at 4-5 days post-inoculation (dpi). The viral antigens in the hippocampus are mainly found in the CD11b-positive cells distributed in the stratum oriens located outside the pyramidal layer, and only a few pyramidal neurons are infected. Furthermore, the apoptotic cells, indicated as showing caspase 3 (Cas3) activation, consist of a high number of uninfected cells. Therefore, it is considered that the apoptotic lesions occur through the indirect effects of infection, and not as a result of direct infection with Mu-3, similar to the reported neuronal apoptosis in the hippocampus after other types of infection. The apoptosis in the pyramidal neurons is accompanied by various types of proinflammatory cytokines depending on the causative agents. Thus, the local expression of proinflammatory cytokines was studied, revealing no correlation in the distribution of cytokine expression with the subregions showing apoptosis. However, the anti-inflammatory cytokine IL-10 was produced by pyramidal neurons of CA2 and CA3 at 3 dpi when there is no destructive change or viral invasion in the hippocampus.
Collapse
Affiliation(s)
- Masatoshi Kakizaki
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Rihito Watanabe
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| |
Collapse
|
9
|
Bourgeois Y, Roulin AC, Müller K, Ebert D. Parasitism drives host genome evolution: Insights from thePasteuria ramosa-Daphnia magnasystem. Evolution 2017; 71:1106-1113. [DOI: 10.1111/evo.13209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/16/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Yann Bourgeois
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
| | - Anne C. Roulin
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- Institute of Plant and Microbial Biology; Zollikerstrasse 107 8008 Zürich Switzerland
| | - Kristina Müller
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
| | - Dieter Ebert
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
| |
Collapse
|
10
|
Watanabe R, Kakizaki M, Ikehara Y, Togayachi A. Formation of fibroblastic reticular network in the brain after infection with neurovirulent murine coronavirus. Neuropathology 2016; 36:513-526. [PMID: 27121485 PMCID: PMC7167860 DOI: 10.1111/neup.12302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 01/12/2023]
Abstract
cl‐2 virus is an extremely neurovirulent murine coronavirus. However, during the initial phase of infection between 12 and 24 h post‐inoculation (hpi), the viral antigens are detected only in the meninges, followed by viral spread into the ventricular wall before invasion into the brain parenchyma, indicating that the viruses employ a passage between the meninges and ventricular wall as an entry route into the brain parenchyma. At 48 hpi, the passage was found to be constructed by ER‐TR7 antigen (ERag)‐positive fibers (ERfibs) associated with laminin and collagen III between the fourth ventricle and meninges at the cerebellopontine angle. The construct of the fibers mimics the reticular fibers of the fibroblastic reticular network, which comprises a conduit system in the lymphoid organs. In the meninges, ERfibs together with collagen fibers, lining in a striped pattern, made up a pile of thin sheets. In the brain parenchyma, mature ERfibs associated with laminin were found around blood vessels. Besides mature ERfibs, immature Erfibs without associations with other extracellular matrix components like laminin and collagen appeared after infection, suggesting that the CNS creates a unique conduit system for immune communication triggered by viral invasion.
Collapse
Affiliation(s)
- Rihito Watanabe
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Masatoshi Kakizaki
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Yuzuru Ikehara
- Research Center For Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Akira Togayachi
- Research Center For Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Kakizaki M, Togayachi A, Narimatsu H, Watanabe R. Contribution of Lewis X Carbohydrate Structure to Neuropathogenic Murine Coronaviral Spread. Jpn J Infect Dis 2016; 69:405-13. [PMID: 26902214 DOI: 10.7883/yoken.jjid.2015.499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although Lewis X (Le(x)), a carbohydrate structure, is involved in innate immunity through cell-to-cell and pathogen recognition, its expression has not been observed in mouse monocytes/macrophages (Mo/Mas). The Mo/Mas that infiltrate the meninges after infection with the neuropathogenic murine coronavirus strain srr7 are an initial target of infection. Furthermore, higher inflammatory responses were observed in gene-manipulated mice lacking α1,3-fucosyltransferase 9, which determines the expression of the Le(x) structure, than in wild type mice after infection. We investigated Le(x) expression using CD11b-positive peritoneal exudate cells (PECs) and found that Le(x) is inducible in Mo/Mas after infection with srr7, especially in the syncytial cells during the late phase of infection. The number of syncytial cells was reduced after treatment of the infected PECs with anti-Le(x) antibody, during the late phase of infection. In addition, the antibody treatment induced a marked reduction in the number of the infected cells at 24 hours post inoculation, without changing the infected cell numbers during the initial phase of infection. These data indicate that the Le(x) structure could play a role in syncytial formation and cell-to-cell infection during the late phase of infection.
Collapse
Affiliation(s)
- Masatoshi Kakizaki
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| | | | | | | |
Collapse
|