1
|
Frum T, Hsu PP, Hein RFC, Conchola AS, Zhang CJ, Utter OR, Anand A, Zhang Y, Clark SG, Glass I, Sexton JZ, Spence JR. Opposing roles for TGFβ- and BMP-signaling during nascent alveolar differentiation in the developing human lung. NPJ Regen Med 2023; 8:48. [PMID: 37689780 PMCID: PMC10492838 DOI: 10.1038/s41536-023-00325-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Alveolar type 2 (AT2) cells function as stem cells in the adult lung and aid in repair after injury. The current study aimed to understand the signaling events that control differentiation of this therapeutically relevant cell type during human development. Using lung explant and organoid models, we identified opposing effects of TGFβ- and BMP-signaling, where inhibition of TGFβ- and activation of BMP-signaling in the context of high WNT- and FGF-signaling efficiently differentiated early lung progenitors into AT2-like cells in vitro. AT2-like cells differentiated in this manner exhibit surfactant processing and secretion capabilities, and long-term commitment to a mature AT2 phenotype when expanded in media optimized for primary AT2 culture. Comparing AT2-like cells differentiated with TGFβ-inhibition and BMP-activation to alternative differentiation approaches revealed improved specificity to the AT2 lineage and reduced off-target cell types. These findings reveal opposing roles for TGFβ- and BMP-signaling in AT2 differentiation and provide a new strategy to generate a therapeutically relevant cell type in vitro.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Peggy P Hsu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Renee F C Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ansley S Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Charles J Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Olivia R Utter
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Abhinav Anand
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yi Zhang
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sydney G Clark
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
- Center for Drug Repurposing, University of Michigan, Ann Arbor, MI, 48109, USA
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Frum T, Hsu PP, Hein RFC, Conchola AS, Zhang CJ, Utter OR, Anand A, Zhang Y, Clark SG, Glass I, Sexton JZ, Spence JR. Opposing roles for TGFβ- and BMP-signaling during nascent alveolar differentiation in the developing human lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539573. [PMID: 37205521 PMCID: PMC10187311 DOI: 10.1101/2023.05.05.539573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alveolar type 2 (AT2) cells function as stem cells in the adult lung and aid in repair after injury. The current study aimed to understand the signaling events that control differentiation of this therapeutically relevant cell type during human development. Using lung explant and organoid models, we identified opposing effects of TGFβ- and BMP-signaling, where inhibition of TGFβ- and activation of BMP-signaling in the context of high WNT- and FGF-signaling efficiently differentiated early lung progenitors into AT2-like cells in vitro . AT2-like cells differentiated in this manner exhibit surfactant processing and secretion capabilities, and long-term commitment to a mature AT2 phenotype when expanded in media optimized for primary AT2 culture. Comparing AT2-like cells differentiated with TGFβ-inhibition and BMP-activation to alternative differentiation approaches revealed improved specificity to the AT2 lineage and reduced off-target cell types. These findings reveal opposing roles for TGFβ- and BMP-signaling in AT2 differentiation and provide a new strategy to generate a therapeutically relevant cell type in vitro .
Collapse
|
3
|
Sainz de Aja J, Dost AFM, Kim CF. Alveolar progenitor cells and the origin of lung cancer. J Intern Med 2021; 289:629-635. [PMID: 33340175 PMCID: PMC8604037 DOI: 10.1111/joim.13201] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/24/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
Lung Cancer is the leading cause of cancer-related deaths worldwide. This is mainly due to late diagnosis and therefore advanced stage of the disease. Understanding the cell of origin of cancer and the processes that lead to its transformation will allow for earlier diagnosis and more accurate prediction of tumour type, ultimately leading to better treatments and lower patient morbidity. In this review, we focus on alveolar type 2 (AT2) cells as the cell of origin of lung adenocarcinoma (LUAD), the most common type of lung cancer. We first elaborate on the different oncogenes that are associated with LUAD and other lung cancers. After, we lay out in detail what is known about AT2 biology, to further delve into AT2 cells as cell of origin for adenocarcinoma. Understanding the precursors of LUAD and identifying the molecular changes during its progression will allow for earlier detection and better molecular targeting of the disease in early stages.
Collapse
Affiliation(s)
- J Sainz de Aja
- From the, Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, MA, USA
| | - A F M Dost
- From the, Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, MA, USA
| | - C F Kim
- From the, Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Jahan R, Shah A, Kisling SG, Macha MA, Thayer S, Batra SK, Kaur S. Odyssey of trefoil factors in cancer: Diagnostic and therapeutic implications. Biochim Biophys Acta Rev Cancer 2020; 1873:188362. [PMID: 32298747 DOI: 10.1016/j.bbcan.2020.188362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Trefoil factors 1, 2, and 3 (TFFs) are a family of small secretory molecules involved in the protection and repair of the gastrointestinal tract (GI). TFFs maintain and restore epithelial structural integrity via transducing key signaling pathways for epithelial cell migration, proliferation, and invasion. In recent years, TFFs have emerged as key players in the pathogenesis of multiple diseases, especially cancer. Initially recognized as tumor suppressors, emerging evidence demonstrates their key role in tumor progression and metastasis, extending their actions beyond protection. However, to date, a comprehensive understanding of TFFs' mechanism of action in tumor initiation, progression and metastasis remains obscure. The present review discusses the structural, functional and mechanistic implications of all three TFF family members in tumor progression and metastasis. Also, we have garnered information from studies on their structure and expression status in different organs, along with lessons from their specific knockout in mouse models. In addition, we highlight the emerging potential of using TFFs as a biomarker to stratify tumors for better therapeutic intervention.
Collapse
Affiliation(s)
- Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA; Department of Otolaryngology-Head & Neck Surgery, University of Nebraska Medical Center, NE, 68198, USA; Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India -191201
| | - Sarah Thayer
- Division of Surgical Oncology, Department of Surgery, University of Nebraska Medical Center, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE 68198, USA.
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA.
| |
Collapse
|