1
|
Maharati A, Moghbeli M. Role of microRNA-505 during tumor progression and metastasis. Pathol Res Pract 2024; 258:155344. [PMID: 38744001 DOI: 10.1016/j.prp.2024.155344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Late diagnosis of cancer in advanced stages due to the lack of screening methods is considered as the main cause of poor prognosis and high mortality rate among these patients. Therefore, it is necessary to investigate the molecular tumor biology in order to introduce biomarkers that can be used in cancer screening programs and early diagnosis. MicroRNAs (miRNAs) have key roles in regulation of the cellular pathophysiological processes. Due to the high stability of miRNAs in body fluids, they are widely used as the non-invasive tumor markers. According to the numerous reports about miR-505 deregulation in a wide range of cancers, we investigated the role of miR-505 during tumor progression. It was shown that miR-505 mainly has the tumor suppressor functions through the regulation of signaling pathways, chromatin remodeling, and cellular metabolism. This review has an effective role in introducing miR-505 as a suitable marker for the early cancer diagnosis.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Taguchi R, Yamaguchi-Tanaka M, Takagi K, Sato A, Miki Y, Miyashita M, Suzuki T. Clinicopathological Significance and Prognostic Role of High Mobility Group Box 1 (HMGB1), Toll-Like Receptor (TLR) 2 and TLR4 in Breast Cancer. Acta Histochem Cytochem 2024; 57:75-83. [PMID: 38695037 PMCID: PMC11058461 DOI: 10.1267/ahc.24-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/03/2024] [Indexed: 05/04/2024] Open
Abstract
High-mobility group box 1 (HMGB1) functions as damage-associated molecular pattern (DAMPs), released into extracellular space during cellular stress. Extracellular HMGB1 act as signal molecules through Toll-like receptor (TLR) 2 or TLR4, exerting diverse functions in both normal cells and malignant cells including breast cancer. However, their comprehensive examination in breast cancer tissues is lacking. Thus, we immunolocalized them in 112 breast cancer tissues, correlating their immunoreactivity with clinicopathological parameters and clinical outcomes to clarify their significance in breast cancer. We demonstrated that nuclear HMGB1 immunoreactivity was correlated with tumor progression and longer disease-free survival. In contrast, TLR2 immunoreactivity was correlated with increased cell proliferation and shorter disease-free survival, dependent on cytoplasmic HMGB1 immunoreactivity. Additionally, TLR4 immunoreactivity correlated with chemoresistance, regardless of cytoplasmic HMGB1 immunoreactivity. It was therefore considered that TLR2 collaboratively contributed to breast cancer progression with HMGB1-DAMPs to become a worse prognostic factor. Meanwhile, TLR4 served as a worse prognostic factor associated with chemoresistance, irrespective of HMGB1.
Collapse
Affiliation(s)
- Reina Taguchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
| | - Mio Yamaguchi-Tanaka
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
- Department of Personalized Medicine Center, Tohoku University Hospital, Sendai, Miyagi 980–8575, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980–8575, Japan
- Department of Pathology, Tohoku University Hospital, Sendai, Miyagi 980–8575, Japan
| |
Collapse
|
3
|
Dou T, Li J, Zhang Y, Pei W, Zhang B, Wang B, Wang Y, Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front Immunol 2024; 15:1368687. [PMID: 38487526 PMCID: PMC10937353 DOI: 10.3389/fimmu.2024.1368687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
At present, the incidence rate of breast cancer ranks first among new-onset malignant tumors in women. The tumor microenvironment is a hot topic in tumor research. There are abundant cells in the tumor microenvironment that play a protumor or antitumor role in breast cancer. During the treatment of breast cancer, different cells have different influences on the therapeutic response. And after treatment, the cellular composition in the tumor microenvironment will change too. In this review, we summarize the interactions between different cell compositions (such as immune cells, fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment and the treatment mechanism of breast cancer. We believe that detecting the cellular composition of the tumor microenvironment is able to predict the therapeutic efficacy of treatments for breast cancer and benefit to combination administration of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Binyue Zhang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Chen R, Zou J, Zhong X, Li J, Kang R, Tang D. HMGB1 in the interplay between autophagy and apoptosis in cancer. Cancer Lett 2024; 581:216494. [PMID: 38007142 DOI: 10.1016/j.canlet.2023.216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Lysosome-mediated autophagy and caspase-dependent apoptosis are dynamic processes that maintain cellular homeostasis, ensuring cell health and functionality. The intricate interplay and reciprocal regulation between autophagy and apoptosis are implicated in various human diseases, including cancer. High-mobility group box 1 (HMGB1), a nonhistone chromosomal protein, plays a pivotal role in coordinating autophagy and apoptosis levels during tumor initiation, progression, and therapy. The regulation of autophagy machinery and the apoptosis pathway by HMGB1 is influenced by various factors, including the protein's subcellular localization, oxidative state, and interactions with binding partners. In this narrative review, we provide a comprehensive overview of the structure and function of HMGB1, with a specific focus on the interplay between autophagic degradation and apoptotic death in tumorigenesis and cancer therapy. Gaining a comprehensive understanding of the significance of HMGB1 as a biomarker and its potential as a therapeutic target in tumor diseases is crucial for advancing our knowledge of cell survival and cell death.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ju Zou
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao Zhong
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jie Li
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Xu N, Li B, Liu Y, Yang C, Tang S, Cho WC, Huang Z. Ferroptosis and triple-negative breast cancer: Potential therapeutic targets. Front Oncol 2022; 12:1017041. [PMID: 36568247 PMCID: PMC9780505 DOI: 10.3389/fonc.2022.1017041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive tumor with poor prognosis, it has higher recurrence and metastatic rates than other breast cancer subtypes. This study aims to investigate biomarkers and potential targets for TNBC related to ferroptosis through data mining and bioinformatics analysis. The findings may provide new insights for treating TNBC. METHODS The TNBC patients' data from the Cancer Genome Atlas (TCGA) database were extracted for differential expression and prognosis analysis. Consensus genes obtained by intersecting differential expressed and ferroptosis-related genes was used to establish the prognostic model by the univariate and multivariate Cox analyses. Besides, TNBC data from the Gene Expression Omnibus (GEO) database was used to confirm the reliability of the prognosis model. Moreover, clinical information was analyzed by multifactorial independent analysis to identify independent prognostic factors. The expression of genes constituting the prognostic model was further validated using the Human Protein Atlas (HPA) database. Finally, the Comparative Toxicogenomic Data (CTD) database was used to explore possible treatment drugs for TNBC. RESULTS We obtained 13,245 differential expressed genes, and 177 consensus genes. 98 genes with prognostic implication were obtained by univariable Cox. Then, a prognostic model including 12 ferroptosis-related genes was constructed by multivariable Cox. The area under curve (AUC) value of the prognostic model for TNBC was 0.82. The GEO database validated that the model (AUC = 0.77) could predict the patient outcomes. The staining results of 10 out of 12 prognostic model genes in HPA database showed that their expression was consistent with our predictions. Clinical risk analysis indicated that risk score of patients could act as an independent prognostic factor. Finally, six drugs that may have interaction with 12 ferroptosis-related genes were obtained using the CTD database. CONCLUSION The prognostic model composed of 12 ferroptosis-related genes could predict the prognosis of TNBC patients, and seven genes (ASNS, LAMP2, CAV1, DPP4, HELLS, TF, ZFP69B) could be potential new therapeutic targets for TNBC, and two drugs (1-methyl-3-isobutylxanthine, rosiglitazone) could act as potential therapeutic drugs for the treatment of TNBC.
Collapse
Affiliation(s)
- Na Xu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Baohong Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yong Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Cui Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Siqi Tang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Zunnan Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
- Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China
| |
Collapse
|
6
|
Kim R, Kin T. Current and Future Therapies for Immunogenic Cell Death and Related Molecules to Potentially Cure Primary Breast Cancer. Cancers (Basel) 2021; 13:cancers13194756. [PMID: 34638242 PMCID: PMC8507525 DOI: 10.3390/cancers13194756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary How a cure for primary breast cancer after (neo)adjuvant therapy can be achieved at the molecular level remains unclear. Immune activation by anticancer drugs may contribute to the eradication of residual tumor cells by postoperative (neo)adjuvant chemotherapy. In addition, chemotherapy-induced immunogenic cell death (ICD) may result in long-term immune activation by memory effector T cells, leading to the curing of primary breast cancer. In this review, we discuss the molecular mechanisms by which anticancer drugs induce ICD and immunogenic modifications for antitumor immunity and targeted therapy against damage-associated molecular patterns. Our aim was to gain a better understanding of how to eradicate residual tumor cells treated with anticancer drugs and cure primary breast cancer by enhancing antitumor immunity with immune checkpoint inhibitors and vaccines. Abstract How primary breast cancer can be cured after (neo)adjuvant therapy remains unclear at the molecular level. Immune activation by anticancer agents may contribute to residual tumor cell eradication with postsurgical (neo)adjuvant chemotherapy. Chemotherapy-induced immunogenic cell death (ICD) may result in long-term immune activation with memory effector T cells, leading to a primary breast cancer cure. Anthracycline and taxane treatments cause ICD and immunogenic modulations, resulting in the activation of antitumor immunity through damage-associated molecular patterns (DAMPs), such as adenosine triphosphate, calreticulin, high mobility group box 1, heat shock proteins 70/90, and annexin A1. This response may eradicate residual tumor cells after surgical treatment. Although DAMP release is also implicated in tumor progression, metastasis, and drug resistance, thereby representing a double-edged sword, robust immune activation by anticancer agents and the subsequent acquisition of long-term antitumor immune memory can be essential components of the primary breast cancer cure. This review discusses the molecular mechanisms by which anticancer drugs induce ICD and immunogenic modifications for antitumor immunity and targeted anti-DAMP therapy. Our aim was to improve the understanding of how to eradicate residual tumor cells treated with anticancer drugs and cure primary breast cancer by enhancing antitumor immunity with immune checkpoint inhibitors and vaccines.
Collapse
Affiliation(s)
- Ryungsa Kim
- Department of Breast Surgery, Hiroshima Mark Clinic, 1-4-3F, 2-Chome Ohte-machi, Naka-ku, Hiroshima 730-0051, Japan
- Correspondence:
| | - Takanori Kin
- Department of Breast Surgery, Hiroshima City Hospital, 7-33, Moto-machi, Naka-ku, Hiroshima 730-8518, Japan;
| |
Collapse
|
7
|
Zheng H, Siddharth S, Parida S, Wu X, Sharma D. Tumor Microenvironment: Key Players in Triple Negative Breast Cancer Immunomodulation. Cancers (Basel) 2021; 13:cancers13133357. [PMID: 34283088 PMCID: PMC8269090 DOI: 10.3390/cancers13133357] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is a complicated network composed of various cells, signaling molecules, and extra cellular matrix. TME plays a crucial role in triple negative breast cancer (TNBC) immunomodulation and tumor progression, paradoxically, acting as an immunosuppressive as well as immunoreactive factor. Research regarding tumor immune microenvironment has contributed to a better understanding of TNBC subtype classification. Shall we treat patients precisely according to specific subtype classification? Moving beyond traditional chemotherapy, multiple clinical trials have recently implied the potential benefits of immunotherapy combined with chemotherapy. In this review, we aimed to elucidate the paradoxical role of TME in TNBC immunomodulation, summarize the subtype classification methods for TNBC, and explore the synergistic mechanism of chemotherapy plus immunotherapy. Our study may provide a new direction for the development of combined treatment strategies for TNBC. Abstract Triple negative breast cancer (TNBC) is a heterogeneous disease and is highly related to immunomodulation. As we know, the most effective approach to treat TNBC so far is still chemotherapy. Chemotherapy can induce immunogenic cell death, release of damage-associated molecular patterns (DAMPs), and tumor microenvironment (TME) remodeling; therefore, it will be interesting to investigate the relationship between chemotherapy-induced TME changes and TNBC immunomodulation. In this review, we focus on the immunosuppressive and immunoreactive role of TME in TNBC immunomodulation and the contribution of TME constituents to TNBC subtype classification. Further, we also discuss the role of chemotherapy-induced TME remodeling in modulating TNBC immune response and tumor progression with emphasis on DAMPs-associated molecules including high mobility group box1 (HMGB1), exosomes, and sphingosine-1-phosphate receptor 1 (S1PR1), which may provide us with new clues to explore effective combined treatment options for TNBC.
Collapse
Affiliation(s)
- Hongmei Zheng
- Hubei Provincial Clinical Research Center for Breast Cancer, Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
- Correspondence: (H.Z.); (X.W.)
| | - Sumit Siddharth
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| | - Sheetal Parida
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| | - Xinhong Wu
- Hubei Provincial Clinical Research Center for Breast Cancer, Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
- Correspondence: (H.Z.); (X.W.)
| | - Dipali Sharma
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| |
Collapse
|
8
|
Mollace A, Coluccio ML, Donato G, Mollace V, Malara N. Cross-talks in colon cancer between RAGE/AGEs axis and inflammation/immunotherapy. Oncotarget 2021; 12:1281-1295. [PMID: 34194625 PMCID: PMC8238251 DOI: 10.18632/oncotarget.27990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
The tumour microenvironment is the result of the activity of many types of cells in various metabolic states, whose metabolites are shared between cells. This cellular complexity results in an availability profile of nutrients and reactive metabolites such as advanced glycation end products (AGE). The tumour microenvironment is not favourable to immune cells due to hypoxia and for the existence of significant competition between various types of cells for a limited nutrient pool. However, it is now known that cancer cells can influence the host's immune reaction through the expression and secretion of numerous molecules. The microenvironment can therefore present itself in different patterns that contribute to shaping immune surveillance. Colorectal cancer (CRC) is one of the most important causes of death in cancer patients. Recently, immunotherapy has begun to give encouraging results in some groups of patients suffering from this neoplasm. The analysis of literature data shows that the RAGE (Receptor for advanced glycation end products) and its numerous ligands contribute to connect the energy metabolic pathway, which appears prevalently disconnected by mitochondrial running, with the immune reaction, conditioned by local microbiota and influencing tumour growth. Understanding how metabolism in cancer and immune cells shapes response and resistance to therapy, will provide novel potential strategies to increase both the number of tumour types treated by immunotherapy and the rate of immunotherapy response. The analysis of literature data shows that an immunotherapy approach based on the knowledge of RAGE and its ligands is not only possible, but also desirable in the treatment of CRC.
Collapse
Affiliation(s)
- Annachiara Mollace
- Department of Health Sciences, Research Centre IRC-FSH, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Laura Coluccio
- Department of Experimental and Clinical Medicine, Bionem Laboratory, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University Magna Græcia of Catanzaro, Campus S. Venuta, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Research Centre IRC-FSH, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy.,These authors contributed equally to this work
| | - Natalia Malara
- Department of Experimental and Clinical Medicine, Bionem Laboratory, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy.,These authors contributed equally to this work
| |
Collapse
|
9
|
Chen H, Lin X, Liu H, Huang C, Li R, Ai J, Wei J, Xiao S. HMGB1 Translocation is Associated with Tumor-Associated Myeloid Cells and Involved in the Progression of Fibroblastic Sarcoma. Pathol Oncol Res 2021; 27:608582. [PMID: 34257571 PMCID: PMC8262203 DOI: 10.3389/pore.2021.608582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022]
Abstract
The morphological variability and genetic complexity of fibroblastic sarcoma makes its diagnosis and treatment a challenge. High-mobility group box 1 protein (HMGB1), which functions as a DNA chaperone and a prototypical damage-associated molecular pattern, plays a paradoxical role in cancer. However, the expression pattern and role of HMGB1 in fibroblastic sarcomas is ill defined. By immunostaining of 95 tissue microarray cores of fibroblastic sarcomas, HMGB1 was found to be expressed in most tumor tissues. Nuclear HMGB1 translocation to cytoplasm was observed both in tumor cells and vascular endothelial cells. A visible number of tumor-associated myeloid cells including CD68+ and CD163+ macrophages and CD33+ myeloid cells were also detected in most tumor tissues. HMGB1 translocation was not only associated with CD68, CD163, and CD33 density, but also with disease progression. These results imply that HMGB1, an important regulator of the tumor microenvironment, is associated with tumor-associated myeloid cells and involved in the progression of fibroblastic sarcomas; HMGB1 may serve as a promising prognostic biomarker and a potential therapeutic target for fibroblastic sarcoma.
Collapse
Affiliation(s)
- Huoying Chen
- Prenatal Diagnosis Center, Guangdong Second Provincial General Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiaoying Lin
- Prenatal Diagnosis Center, Guangdong Second Provincial General Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Cheng Huang
- Prenatal Diagnosis Center, Guangdong Second Provincial General Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, China
| | - Rong Li
- Prenatal Diagnosis Center, Guangdong Second Provincial General Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, China
| | - Jie Ai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jiaxue Wei
- Prenatal Diagnosis Center, Guangdong Second Provincial General Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, China
| | - Shengjun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
10
|
Dong H, Song J. miR-142-3p reduces the viability of human cervical cancer cells by negatively regulating the cytoplasmic localization of HMGB1. Exp Ther Med 2021; 21:212. [PMID: 33500702 PMCID: PMC7818541 DOI: 10.3892/etm.2021.9644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
High mobility group protein B1 (HMGB1) is a nuclear protein that has been reported to contribute to tumor growth in humans. The present study identified a microRNA (miR/miRNA) that targets the 3' untranslated region (3'UTR) of the HMGB1 gene and assessed its effects on the proliferation of human cervical cancer cells and associated molecular mechanism. Western blotting was performed to determine HMGB1 levels in HeLa cells. TargetScan software was used to identify miRNA binding sites adjacent to the HMGB1. The viability of HeLa cells transfected with miR-142-3p mimics or inhibitors was determined using an MTT assay. The subcellular distribution (cytoplasmic or nuclear) of HMGB1 in HeLa cells was observed by western blotting. HMGB1 expression in HeLa and CaSKi cells was significantly higher compared with normal control cervical cells. TargetScan analysis indicated that miR-142-3p binds to the 3'UTR of HMGB1. Transfection with a miR-142-3p inhibitor increased cytoplasmic HMGB1 expression in HeLa cells, as shown by western blot analysis, while transfection with miR-142-3p mimics decreased the cytoplasmic expression of HMGB1 in HeLa cells. Therefore, miR-142-3p negatively regulated HMGB1 levels in cervical cancer cells. These findings indicated that miR-142-3p inhibited the proliferation of human cervical cancer cells, at least in part, by negatively regulating the cytoplasmic localization of HMGB1.
Collapse
Affiliation(s)
- Hui Dong
- Department of Obstetrics, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin 300052, P.R. China
| | - Jie Song
- Department of Gynecology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin 300052, P.R. China
| |
Collapse
|
11
|
Li G, Liu F, Miao J, Hu Y. miR-505 inhibits proliferation of osteosarcoma via HMGB1. FEBS Open Bio 2020; 10:1251-1260. [PMID: 32348630 PMCID: PMC7327918 DOI: 10.1002/2211-5463.12868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a malignant bone tumor, and clinically detectable metastases can be detected in ~ 15–20% of patients when they seek medical advice; patients with metastatic disease have extremely poor prognosis. Here, we examined the involvement of the microRNA miR‐505 in osteosarcoma. Eighty‐four patients seeking treatment for osteosarcoma were included in the study group (SG), and 63 healthy subjects were allocated to the control group (CG). Normal human bone cells MG‐63 and U20S cells were transfected with miR‐505 mimics, miR‐NC, HMGB1 RNA for targeted inhibition (si‐HMGB1), and si‐NC to examine the effects on HMGB1 expression. Cell proliferation, invasion, and apoptosis were measured using CCK‐8, scratch assays, and flow cytometry (FCM), respectively, and the relationship between miR‐505 and HMGB1 was determined using the dual‐luciferase reporter assay. In patient tissues and serum, miR‐505 was expressed at a low level, and HMGB1 was expressed at a high level, with an area under curve of > 0.9. Furthermore, the expression of miR‐505 and HMGB1 in tissues had a positive association with that in the serum, whereas the expression of miR‐505 had a negative association with that of HMGB1 in tissues only. Overexpression of miR‐505 and silencing of HMGB1 suppressed the proliferation, migration, and invasion of osteosarcoma cells and increased the rate of apoptosis, whereas the co‐transfected miR‐505 mimics + si‐HMGB1 demonstrated a more significant inhibitory effect on the proliferation and invasion of osteosarcoma cells and a higher apoptosis rate. miR‐505 may inhibit the proliferation and invasion and promote apoptosis of osteosarcoma cells by targeting and suppressing HMGB1.
Collapse
Affiliation(s)
- Guangzhang Li
- The Graduate School, Tianjin Medical University, China
| | - Fajing Liu
- Department of Spine Surgery, Tianjin Hospital, China
| | - Jun Miao
- Department of Spine Surgery, Tianjin Hospital, China
| | - Yongcheng Hu
- Department of Orthopedic Oncology, Tianjin Hospital, China
| |
Collapse
|
12
|
Gorgulho CM, Romagnoli GG, Bharthi R, Lotze MT. Johnny on the Spot-Chronic Inflammation Is Driven by HMGB1. Front Immunol 2019; 10:1561. [PMID: 31379812 PMCID: PMC6660267 DOI: 10.3389/fimmu.2019.01561] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
Although much has been made of the role of HMGB1 acting as an acute damage associated molecular pattern (DAMP) molecule, prompting the response to tissue damage or injury, it is also released at sites of chronic inflammation including sites of infection, autoimmunity, and cancer. As such, the biology is distinguished from homeostasis and acute inflammation by the recruitment and persistence of myeloid derived suppressor cells, T regulatory cells, fibrosis and/or exuberant angiogenesis depending on the antecedents and the other individual inflammatory partners that HMGB1 binds and focuses, including IL-1β, CXCL12/SDF1, LPS, DNA, RNA, and sRAGE. High levels of HMGB1 released into the extracellular milieu and its persistence in the microenvironment can contribute to the pathogenesis of many if not all autoimmune disorders and is a key factor that drives inflammation further and worsens symptoms. HMGB1 is also pivotal in the maintenance of chronic inflammation and a “wound healing” type of immune response that ultimately contributes to the onset of carcinogenesis and tumor progression. Exosomes carrying HMGB1 and other instructive molecules are released and shape the response of various cells in the chronic inflammatory environment. Understanding the defining roles of REDOX, DAMPs and PAMPs, and the host response in chronic inflammation requires an alternative means for positing HMGB1's central role in limiting and focusing inflammation, distinguishing chronic from acute inflammation.
Collapse
Affiliation(s)
- Carolina M Gorgulho
- Tumor Immunology Laboratory, Department of Microbiology and Immunology, Botucatu Institute of Biosciences, São Paulo State University, Botucatu, Brazil.,DAMP Laboratory, Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Graziela G Romagnoli
- Tumor Immunology Laboratory, Department of Microbiology and Immunology, Botucatu Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Rosh Bharthi
- DAMP Laboratory, Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael T Lotze
- DAMP Laboratory, Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Lee M, Park IA, Heo SH, Kim YA, Gong G, Lee HJ. Association between p53 Expression and Amount of Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer. J Pathol Transl Med 2019; 53:180-187. [PMID: 30853706 PMCID: PMC6527934 DOI: 10.4132/jptm.2019.02.08] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/08/2019] [Indexed: 01/18/2023] Open
Abstract
Background Most triple-negative breast cancers (TNBCs) have a high histologic grade, are associated with high endoplasmic stress, and possess a high frequency of TP53 mutations. TP53 missense mutations lead to the production of mutant p53 protein and usually show high levels of p53 protein expression. Tumor-infiltrating lymphocytes (TILs) accumulate as part of the anti-tumor immune response and have a strong prognostic and predictive significance in TNBC. We aimed to elucidate the association between p53 expression and the amount of TILs in TNBC. Methods In 678 TNBC patients, we evaluated TIL levels and expression of endoplasmic stress molecules. Immunohistochemical examination of p53 protein expression was categorized into three groups: no, low, and high expression. Results No, low, and high p53 expression was identified in 44.1% (n = 299), 20.1% (n = 136), and 35.8% (n = 243) of patients, respectively. Patients with high p53 expression showed high histologic grade (p < .001), high TIL levels (p = .009), and high expression of endoplasmic reticulum stress-associated molecules (p-eIF2a, p = .013; XBP1, p = .007), compared to patients with low p53 expression. There was no significant difference in disease-free (p = .406) or overall survival rates (p = .444) among the three p53 expression groups. Conclusions High p53 expression is associated with increased expression of endoplasmic reticulum stress molecules and TIL influx.
Collapse
Affiliation(s)
- Miseon Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Ah Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun-Hee Heo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Ae Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Gao Q, Wang S, Chen X, Cheng S, Zhang Z, Li F, Huang L, Yang Y, Zhou B, Yue D, Wang D, Cao L, Maimela NR, Zhang B, Yu J, Wang L, Zhang Y. Cancer-cell-secreted CXCL11 promoted CD8 + T cells infiltration through docetaxel-induced-release of HMGB1 in NSCLC. J Immunother Cancer 2019; 7:42. [PMID: 30744691 PMCID: PMC6371476 DOI: 10.1186/s40425-019-0511-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/16/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chemotherapy combined with immunotherapy becomes the main trend in lung cancer intervention; however, how chemotherapy promotes the immune function remains elusive. Therefore, we sought to determine how chemotherapy promotes the immune function. METHODS We determined in 100 NSCLC patients the expression of CD8, functional markers (IFN-γ, Granzyme B, and Perforin) and specific chemokines by quantitative real-time reverse transcriptase-PCR. Functional experiments were carried out to check whether docetaxel (DOC), a chemotherapeutic agent, modifies the expression of HMGB1 and CXCL11, and influences the infiltration properties of CD8+ T cells to the tumor microenvironment. The mechanism of the release of HMGB1 and CXCL11 was determined by flow cytometry, immunofluorescence and western blotting. In in vivo experiment, we confirmed how DOC enhanced the recruitment of HER2-CAR T cells to tumor sites. RESULTS We found that DOC upregulated the expression of chemokine receptor ligand CXCL11 in tumor microenvironment and subsequently enhanced CD8+ T cell recruitment. DOC treatment significantly increased HMGB1 release in an ROS-dependent manner. Recombinant protein HMGB1 stimulated the secretion of CXCL11 via NF-κB activation in vitro. Tumors from DOC-treated mice exhibited higher expression of HMGB1 and CXCL11, more HER2-CAR T cell infiltration, and reduced progression, relative to control. Increased HMGB1 and CXCL11 expressions were positively correlated with prolonged overall survival of lung cancer patients. CONCLUSIONS Our results demonstrate that DOC induces CD8+ T cell recruitment to the tumor microenvironment by enhancing the secretion of HMGB1 and CXCL11, thus improving the anti-tumor efficacy, indicating that modulating the HMGB1-CXCL11 axis might be helpful for NSCLC treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Line, Tumor
- Chemokine CXCL11/immunology
- Chemotaxis, Leukocyte/drug effects
- Docetaxel/pharmacology
- Docetaxel/therapeutic use
- Female
- HMGB1 Protein/genetics
- HMGB1 Protein/immunology
- Humans
- Immunotherapy, Adoptive
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice, Inbred BALB C
- Mice, Nude
- Receptor, ErbB-2/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Qun Gao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Shumin Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xinfeng Chen
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Shaoyan Cheng
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhen Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Feng Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lan Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yang Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Bin Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
| | - Dongli Yue
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Dan Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Ling Cao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | | | - Bin Zhang
- Department of Hematology/Oncology, School of Medicine, Northwestern University, Chicago, USA
| | - Jane Yu
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267 USA
| | - Liping Wang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052 Henan China
| |
Collapse
|
15
|
Lee H, Lee HJ, Song IH, Bang WS, Heo SH, Gong G, Park IA. CD11c-Positive Dendritic Cells in Triple-negative Breast Cancer. In Vivo 2019; 32:1561-1569. [PMID: 30348717 DOI: 10.21873/invivo.11415] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) and tertiary lymphoid structures (TLSs) are prognostic markers in triple-negative breast cancer (TNBC). Our study analyzed the relationship between cluster of differentiation (CD)11c-positive dendritic cells (DCs) and TILs and TLSs to elucidate mechanisms of TIL influx. MATERIALS AND METHODS Immunohistochemical staining for CD4, CD8, and CD11c in tissue microarrays from 681 patients with TNBC was performed. The proportions of TILs and TLSs were reviewed. Two additional TNBC gene expression datasets were used. RESULTS CD11c expression showed a significantly positive correlation with the level of TILs and the number of CD4+ and CD8+ T-cells, as well as an abundance of TLSs. CD11C gene expression was also significantly correlated with expression of CD4, CD8, and genes related to TLSs in both datasets. CONCLUSION We demonstrated a strong correlation of CD11c expression, which represents DCs, with TILs and TLSs in TNBC. Further investigation is warranted to identify therapeutic modalities that facilitate recruitment and activation of DCs.
Collapse
Affiliation(s)
- Heejae Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.,Asan Center for Cancer Genome Discovery - Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hee Jin Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - In Hye Song
- Department of Hospital Pathology, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won Seon Bang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.,Asan Center for Cancer Genome Discovery - Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sun-Hee Heo
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.,Asan Center for Cancer Genome Discovery - Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - In Ah Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
16
|
Di Cara G, Marabeti MR, Musso R, Riili I, Cancemi P, Pucci Minafra I. New Insights into the Occurrence of Matrix Metalloproteases -2 and -9 in a Cohort of Breast Cancer Patients and Proteomic Correlations. Cells 2018; 7:cells7080089. [PMID: 30060564 PMCID: PMC6115737 DOI: 10.3390/cells7080089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 01/01/2023] Open
Abstract
Matrix metalloproteases (MMPs) are a family of well-known enzymes which operate prevalently in the extracellular domain, where they fulfil the function of remodeling the extracellular matrix (ECM). Within the 26 family members, encoded by 24 genes in humans, MMP-2 and MMP-9 have been regarded as primarily responsible for the basement membrane and peri-cellular ECM rearrangement. In cases of infiltrating carcinomas, which arise from the epithelial tissues of a gland or of an internal organ, a marked alteration of the expression and the activity levels of both MMPs is known to occur. The present investigation represents the continuation and upgrading of our previous studies, now focusing on the occurrence and intensity levels of MMP-2 and -9 and their proteomic correlations in a cohort of 80 breast cancer surgical tissues.
Collapse
Affiliation(s)
- Gianluca Di Cara
- Centro di Oncobiologia Sperimentale, Università di Palermo, 90146 Palermo, Italy.
| | - Maria Rita Marabeti
- Centro di Oncobiologia Sperimentale, Università di Palermo, 90146 Palermo, Italy.
| | - Rosa Musso
- Centro di Oncobiologia Sperimentale, Università di Palermo, 90146 Palermo, Italy.
| | | | - Patrizia Cancemi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, 90100 Palermo, Italy.
| | - Ida Pucci Minafra
- Centro di Oncobiologia Sperimentale, Università di Palermo, 90146 Palermo, Italy.
| |
Collapse
|
17
|
Huang CY, Chiang SF, Ke TW, Chen TW, Lan YC, You YS, Shiau AC, Chen WTL, Chao KSC. Cytosolic high-mobility group box protein 1 (HMGB1) and/or PD-1+ TILs in the tumor microenvironment may be contributing prognostic biomarkers for patients with locally advanced rectal cancer who have undergone neoadjuvant chemoradiotherapy. Cancer Immunol Immunother 2018; 67:551-562. [PMID: 29270668 PMCID: PMC11028045 DOI: 10.1007/s00262-017-2109-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Rectal cancer, which comprises 30% of all colorectal cancer cases, is one of the most common forms of cancer in the world. Patients with locally advanced rectal cancer (LARC) are often treated with neoadjuvant chemoradiotherapy (neoCRT) followed by surgery. However, after neoCRT treatment, approximately one-third of the patients progress to local recurrence or distant metastasis. In these studies, we found that patients with tumors that exhibited cytosolic HMGB1(Cyto-HMGB1) translocation and/or the presence of PD-1+ tumor-infiltrating lymphocytes (TILs) before treatment had a better clinical outcome. The better outcome is likely due to the release of HMGB1, which triggers the maturation of dendritic cells (DCs) via TLR4 activation, and the subsequent recruitment of PD-1+ tumor-infiltrating lymphocytes to the tumor site, where they participate in immune-scavenging. In conclusion, our results provide evidence that cyto-HMGB1 and/or PD-1+TIL are not only predictive biomarkers before treatment, but they can also potentially designate patients for personalized oncological management including immunotherapy.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 406, Taiwan, ROC
| | - Shu-Fen Chiang
- Cancer Center Building, Cancer Center, China Medical University Hospital, China Medical University, No. 2 Yude Road, North District, Taichung, 40402, Taiwan, ROC
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 406, Taiwan, ROC
| | - Tsung-Wei Chen
- Department of Pathology, China Medical University Hospital, China Medical University, Taichung, 406, Taiwan, ROC
| | - Yu-Ching Lan
- Department of Health Risk Management, China Medical University, Taichung, 406, Taiwan, ROC
| | - Ying-Shu You
- Cancer Center Building, Cancer Center, China Medical University Hospital, China Medical University, No. 2 Yude Road, North District, Taichung, 40402, Taiwan, ROC
| | - An-Cheng Shiau
- Cancer Center Building, Cancer Center, China Medical University Hospital, China Medical University, No. 2 Yude Road, North District, Taichung, 40402, Taiwan, ROC
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 406, Taiwan, ROC
| | - K S Clifford Chao
- Cancer Center Building, Cancer Center, China Medical University Hospital, China Medical University, No. 2 Yude Road, North District, Taichung, 40402, Taiwan, ROC.
| |
Collapse
|
18
|
Park IA, Heo SH, Song IH, Kim YA, Park HS, Bang WS, Park SY, Jo JH, Lee HJ, Gong G. Endoplasmic reticulum stress induces secretion of high-mobility group proteins and is associated with tumor-infiltrating lymphocytes in triple-negative breast cancer. Oncotarget 2018; 7:59957-59964. [PMID: 27494867 PMCID: PMC5312361 DOI: 10.18632/oncotarget.11010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022] Open
Abstract
Background Although the prognostic and predictive significance of tumor-infiltrating lymphocytes (TILs) in triple-negative breast cancer (TNBC) have been shown, the cause of the TIL influx is unclear. Here, we investigated whether extracellular secretion of HMGN1 is associated with TIL influx, as well as increased endoplasmic reticulum stress (ERS), in human TNBC. Methods We reviewed the slides of 767 patients with TNBC and evaluated the TIL levels. We also assessed the expression of HMGs and several ERS-associated molecules using immunohistochemical staining. Western blot analysis of human TNBC cell lines and pharmacological ERS inducers was used to determine if HMGN1 migrates from the nucleus to the extracellular space in response to ERS. Results On immunohistochemical staining, either higher nuclear or cytoplasmic expression of both HMGB1 and HMGN1 was significantly associated with ERS. TILs showed a positive correlation with the cytoplasmic expression of the HMGs. Western blot analysis of TNBC cell lines showed that ERS induction resulted in the secretion of HMG proteins. Conclusions This is the first study to elucidate the associations among ERS, secretion of HMGs, and degree of TILs in TNBCs. Understanding the mechanisms of TIL influx will help in the development of effective immunotherapeutic agents for TNBC.
Collapse
Affiliation(s)
- In Ah Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sun-Hee Heo
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - In Hye Song
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young-Ae Kim
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hye Seon Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Won Seon Bang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Suk Young Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jeong-Hyon Jo
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Jin Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Gyungyub Gong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
19
|
Amornsupak K, Jamjuntra P, Warnnissorn M, O-Charoenrat P, Sa-Nguanraksa D, Thuwajit P, Eccles SA, Thuwajit C. High ASMA + Fibroblasts and Low Cytoplasmic HMGB1 + Breast Cancer Cells Predict Poor Prognosis. Clin Breast Cancer 2017; 17:441-452.e2. [PMID: 28533055 DOI: 10.1016/j.clbc.2017.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The influence of cancer-associated fibroblasts (CAFs) and high mobility group box 1 (HMGB1) has been recognized in several cancers, although their roles in breast cancer are unclear. The present study aimed to determine the levels and prognostic significance of α-smooth muscle actin-positive (ASMA+) CAFs, plus HMGB1 and receptor for advanced glycation end products (RAGE) in cancer cells. MATERIALS AND METHODS A total of 127 breast samples, including 96 malignant and 31 benign, were examined for ASMA, HMGB1, and RAGE by immunohistochemistry. The χ2 test and Fisher's exact test were used to test the association of each protein with clinicopathologic parameters. The Kaplan-Meier method or log-rank test and Cox regression were used for survival analysis. RESULTS ASMA+ fibroblast infiltration was significantly increased in the tumor stroma compared with that in benign breast tissue. The levels of cytoplasmic HMGB1 and RAGE were significantly greater in the breast cancer tissue than in the benign breast tissues. High ASMA expression correlated significantly with large tumor size, clinical stage III-IV, and angiolymphatic and perinodal invasion. In contrast, increased cytoplasmic HMGB1 correlated significantly with small tumor size, pT stage, early clinical stage, luminal subtype (but not triple-negative subtype), and estrogen receptor and progesterone receptor expression. The levels of ASMA (hazard ratio, 14.162; P = .010) and tumor cytoplasmic HMGB1 (hazard ratio, 0.221; P = .005) could serve as independent prognostic markers for metastatic relapse in breast cancer patients. The ASMA-high/HMGB1-low profile provided the most reliable prediction of metastatic relapse. CONCLUSION We present for the first time, to the best of our knowledge, the potential clinical implications of the combined assessment of ASMA+ fibroblasts and cytoplasmic HMGB1 in breast cancer.
Collapse
Affiliation(s)
- Kamolporn Amornsupak
- Department of Immunology, Graduate Program in Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pranisa Jamjuntra
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Malee Warnnissorn
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornchai O-Charoenrat
- Division of Head, Neck and Breast Surgery, Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Doonyapat Sa-Nguanraksa
- Division of Head, Neck and Breast Surgery, Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, United Kingdom
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|