1
|
Miao H, Wang L, Qu L, Liu H, Sun Y, Le M, Wang Q, Wei S, Zheng Y, Lin W, Duan Y, Cao H, Xiong S, Wang X, Wei L, Li C, Ma Q, Ju M, Zhao R, Li G, Mu C, Tian Q, Mei H, Zhang T, Gao T, Zhang H. Genomic evolution and insights into agronomic trait innovations of Sesamum species. PLANT COMMUNICATIONS 2024; 5:100729. [PMID: 37798879 PMCID: PMC10811377 DOI: 10.1016/j.xplc.2023.100729] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/17/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Sesame is an ancient oilseed crop with high oil content and quality. However, the evolutionary history and genetic mechanisms of its valuable agronomic traits remain unclear. Here, we report chromosome-scale genomes of cultivated sesame (Sesamum indicum L.) and six wild Sesamum species, representing all three karyotypes within this genus. Karyotyping and genome-based phylogenic analysis revealed the evolutionary route of Sesamum species from n = 13 to n = 16 and revealed that allotetraploidization occurred in the wild species Sesamum radiatum. Early divergence of the Sesamum genus (48.5-19.7 million years ago) during the Tertiary period and its ancient phylogenic position within eudicots were observed. Pan-genome analysis revealed 9164 core gene families in the 7 Sesamum species. These families are significantly enriched in various metabolic pathways, including fatty acid (FA) metabolism and FA biosynthesis. Structural variations in SiPT1 and SiDT1 within the phosphatidyl ethanolamine-binding protein gene family lead to the genomic evolution of plant-architecture and inflorescence-development phenotypes in Sesamum. A genome-wide association study (GWAS) of an interspecific population and genome comparisons revealed a long terminal repeat insertion and a sequence deletion in DIR genes of wild Sesamum angustifolium and cultivated sesame, respectively; both variations independently cause high susceptibility to Fusarium wilt disease. A GWAS of 560 sesame accessions combined with an overexpression study confirmed that the NAC1 and PPO genes play an important role in upregulating oil content of sesame. Our study provides high-quality genomic resources for cultivated and wild Sesamum species and insights that can improve molecular breeding strategies for sesame and other oilseed crops.
Collapse
Affiliation(s)
- Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Lingbo Qu
- College of Food Science and Technology, Henan Technology University, Zhengzhou 450001, China
| | - Hongyan Liu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yamin Sun
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Meiwang Le
- Crops Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Qiang Wang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shuangling Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongzhan Zheng
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wenchao Lin
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hengchun Cao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Songjin Xiong
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xuede Wang
- College of Food Science and Technology, Henan Technology University, Zhengzhou 450001, China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qin Ma
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ming Ju
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruihong Zhao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Guiting Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Cong Mu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qiuzhen Tian
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hongxian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Tide Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Tongmei Gao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| |
Collapse
|
2
|
Wang C, Niu J, Wei L, Li C, Li G, Tian Q, Ju M, Ma Q, Cao H, Duan Y, Guo H, Zhang H, Miao H. A 4.43-Kb deletion of chromosomal segment containing an ovate family protein confers long capsule in sesame (Sesamum indicum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:221. [PMID: 37819543 DOI: 10.1007/s00122-023-04465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
KEY MESSAGE A 4.43-Kb structural variation in the sesame genome results in the deletion of the Siofp1 gene and induces the long capsule length trait. Capsule length (CL) has a positive effect on seed weight and yield in various agronomically important species; however, the molecular mechanism underlying long capsule trait regulation in sesame remains unknown. The inheritance analysis showed that long capsule traits (CL > 4.0 cm) were dominant over normal length (average CL = 3.0 cm) and were controlled by a single gene pair. Association mapping with a RIL population and 259 natural sesame germplasm accessions indicated that the target interval was 52,830-730,961 bp of SiChr.10 in sesame. Meanwhile, the structural variation (SV) of the association mapping revealed that only SV_414325 on chromosome 10 was significantly associated with the CL trait, with a P value of 1.1135E-19. SV_414325 represents a 4430-bp deletion from 414,325 to 418,756 bp on SiChr.10, covering Sindi_2155000 (named SiOFP1). In the normal length type, Siofp1 encodes 411 amino acids of the ovate family proteins and is highly expressed in the leaf, stem, bud, and capsule tissues of sesame. In accordance with the transcriptional repressor character, Siofp1 overexpression in transgenic Arabidopsis (T0 and T1 generations) induced a 25-39% greater shortening of silique length than the wild type (P < 0.05), as well as round cauline leaves and short carpels. These results confirm that SiOFP1 plays a key role in regulating CL trait in sesame and other flowering plants. These findings provide a theoretical and material basis for sesame capsule development and high-yield breeding research.
Collapse
Affiliation(s)
- Cuiying Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Jiaojiao Niu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Guiting Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Qiuzhen Tian
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Ming Ju
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Qin Ma
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Hengchun Cao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Hui Guo
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Haiyang Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China.
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
3
|
Miao H, Li C, Duan Y, Wei L, Ju M, Zhang H. Identification of a Sidwf1 gene controlling short internode length trait in the sesame dwarf mutant dw607. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:73-86. [PMID: 31686114 DOI: 10.1007/s00122-019-03441-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
SiDWF1 encodes a gibberellin receptor GID1B-like protein controlling the internode length and plant height in sesame. Sesame is a high-height crop. Here we systematically analyzed the morphological and genetic characters of the sesame dwarf mutant dw607 (dwf1 type). The plant height and the internode length of dw607 significantly declined, while the thousand seed weight (TSW) significantly increased (P < 0.01). The cell size of stem parenchyma and pith tissue reduced, and vascular bundle cells and parenchyma tissue arranged much tighter in the dwarf mutant. Based on the cross-population association mapping of a RIL population of the cross 'dw607 (dwf1) × 15N41 (wt type),' the target interval linked to the short internode length was located on C9.scaffold2 of SiChr.4 in sesame. We further screened the 58 variants using the genomic variant data of 824 germplasm and BSA DNA pools and determined the target gene Sidwf1. The SNP mutation of C1057 to T1057 resulted in the amino acid change of P150 (proline) to S150 (serine) in SiDWF1. SiDWF1 gene allele is 1,638 bp and encodes a gibberellin receptor GID1B-like protein. Transcription profile assay reflected that Sidwf1 is highly expressed in leaf, stem, bud, and capsule tissues. The dynamic variation in endogenous GA3 content in dw607 and the wild type was also monitored in this study. The results revealed the molecular genetic mechanism of the internode length and plant height trait in sesame for the first time. The findings supply the theoretical and material basis for developing the marker-assisted selection (MAS) breeding in sesame.
Collapse
Affiliation(s)
- Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Ming Ju
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China.
| |
Collapse
|
4
|
Yang Z, Li X, Liao H, Hu L, Peng C, Wang S, Huang X, Bao Z. A Molecular Cytogenetic Map of Scallop (Patinopecten yessoensis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:731-742. [PMID: 31473865 DOI: 10.1007/s10126-019-09918-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
To consolidate the genetic, physical, and cytogenetic maps of scallop (Patinopecten yessoensis), we constructed a molecular cytogenetic map by localizing 84 fosmid clones that contain different SNP markers from 19 linkage groups (LGs) using fluorescence in situ hybridization (FISH). Among these 84 SNP-anchored clones, 56 clones produced specific and stable signals on one pair of chromosomes. Dual-color FISH assigned 19 LGs to their corresponding chromosomes with 38 SNP-anchored clones as probes. Among these 19 LGs, 17 LGs were assigned to their corresponding one pair of chromosomes, while two clones containing SNPs from LG10 and LG19 were located on two different pairs of chromosomes separately. The orientation of 7 LGs was corrected according to the chromosome location of SNPs within the same LG. In addition, a probe panel of SNP-anchored clones was developed to identify each chromosome of P. yessoensis. The molecular cytogenetic map will facilitate molecular breeding in scallop and enable comparative studies on chromosome evolution of bivalve mollusk.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Office Box 11103, 9700 CC, Groningen, Netherlands
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, China
| | - Liping Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Yantai Fisheries Research Institute, Yantai, China
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shenhai Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
A SNP Mutation of SiCRC Regulates Seed Number Per Capsule and Capsule Length of cs1 Mutant in Sesame. Int J Mol Sci 2019; 20:ijms20164056. [PMID: 31434218 PMCID: PMC6720709 DOI: 10.3390/ijms20164056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 11/16/2022] Open
Abstract
Seed number per capsule (SNC) is a major factor influencing seed yield and is an important trait with complex gene interaction effects. We first performed genetic analysis, gene cloning, and molecular mechanism study for an EMS-induced sesame mutant cs1 with fewer SNC and shorter capsule length (CL). The mutant traits were due to the pleiotropism of a regressive gene (Sics1). Capsule hormone determination showed that five out of 12 hormones, including auxin indole-3-acetic acid (IAA), had significantly different levels between wild type (WT) and mutant type (MT). KEGG pathway analysis showed that plant hormone signal transduction, especially the auxin signal transduction pathway, was the most abundant differentially expressed signaling pathway. After the cross-population association and regional genome screening, we found that three homozygous loci were retained in cs1. Further analysis of these three loci resulted in the identification of SiCRC as the candidate gene for cs1. SiCRC consists of seven exons and six introns encoding 163 amino acids. The SiCRC in cs1 showed a point mutation at intron 5 and exon 6 junction, resulting in the splice site being frame-shifted eight nucleotides further downstream, causing incorrect splicing. Taken together, we assumed the SNP mutation in SiCRC disrupted the function of the transcription factor, which might act downstream of the CRC-auxin signal transduction pathway, resulting in a shorter CL and less SNC mutation of cs1 in sesame. Our results highlight the molecular framework underlying the transcription factor CRC-mediated role of auxin transduction in SNC and CL development.
Collapse
|
6
|
Zhang H, Miao H, Wei L, Li C, Duan Y, Xu F, Qu W, Zhao R, Ju M, Chang S. Identification of a SiCL1 gene controlling leaf curling and capsule indehiscence in sesame via cross-population association mapping and genomic variants screening. BMC PLANT BIOLOGY 2018; 18:296. [PMID: 30466401 PMCID: PMC6251216 DOI: 10.1186/s12870-018-1503-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/26/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Leaf shape can affect plantlet development and seed yield in sesame. The morphological, histological and genetic analyses of a sesame mutant cl1 (cl) with curly leaf and indehiscent capsule traits were performed in this study. In order to clone the cl1 gene for breeding selection, genome re-sequencing of the 130 individuals of cl1 × USA (0)-26 F2 population and a bulked segregation analysis (BSA) pool was carried out. The genome re-sequencing data of the 822 germplasm with normal leaf shape were applied. RESULTS For cl1 mutant, the adaxial/abaxial character of the parenchyma cells in the leaf blades is reduced. Results proved that the leaf curling trait is controlled by a recessive gene (Sicl1). Cross- population association of the F2 population of cl1 × USA (0)-26 indicated that the target cl locus was located on the interval C29 between C29_6522236 and C29_6918901 of SiChr. 1. Further regional genome variants screening determined the 6 candidate variants using genomic variants data of 822 natural germplasm and a BSA pool data. Of which, 5 markers C29_6717525, C29_6721553, C29_6721558, C29_6721563, and C29_6721565 existed in the same gene (C29.460). With the aid of the validation in the test F2 population of cl1 × Yuzhi 11 and natural germplasm, the integrated marker SiCLInDel1 (C29: 6721553-6721572) was determined as the target marker, and C29.460 was the target gene SiCL1 in sesame. SiCL1 is a KAN1 homolog with the full length of 6835 bp. In cl1, the 20 nucleic acids (CAGGTAGCTATGTATATGCA) of SiCLInDel1 marker were mutagenized into 6 nucleic acids (TCTTTG). The deletion led to a frameshift mutation and resulted in the earlier translation termination of the CL gene. The Sicl1 allele was shortened to 1829 bp. SiCL1 gene was expressed mainly in the tissues of stem, leaf, bud, capsule and seed. CONCLUSIONS SiCL1 encodes a transcription repressor KAN1 protein and controls leaf curling and capsule indehiscence in sesame. The findings provided an example of high-efficient gene cloning in sesame. The SiCL1 gene and the cl1 mutant supply the opportunity to explore the development regulation of leaf and capsule, and would improve the new variety breeding with high harvest mechanization adaption in sesame.
Collapse
Affiliation(s)
- Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Fangfang Xu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Wenwen Qu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Ruihong Zhao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Ming Ju
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Shuxian Chang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| |
Collapse
|
7
|
Marakli S. Identification and functional analyses of new sesame miRNAs (Sesamum indicum L.) and their targets. Mol Biol Rep 2018; 45:2145-2155. [PMID: 30209739 DOI: 10.1007/s11033-018-4373-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
Plant microRNAs (miRNAs) have been commonly investigated during many years. Hundreds of miRNAs have been identified in many different plant species but there is very little information about the function of sesame (Sesamum indicum L.) miRNAs. For this purpose, in silico prediction of novel sesame miRNAs based on BLAST searches of the expressed sequence tag database was performed, using stringent criterias for miRNA annotation. The secondary structures of their precursor sequences, potential target genes of conserved and novel miRNAs were predicted and subjected to Gene Ontology (GO) annotation. mir447 and mir8140 were reported for the first time in sesame. Enrichment analysis of the GO with biological processes, cellular component and molecular functions revealed that these target genes were potentially involved in different metabolic pathways such as transcription factors, metabolism, growth and development, stress-related and even plant hormones. Results are valuable for figure out the gene regulation mechanism in sesame, using in the medicinal aspect of this plant species. Furthermore, these miRNAs and their profiled targets could provide the improvement of regulation and management, and even development of desirable traits in this plant.
Collapse
Affiliation(s)
- Sevgi Marakli
- Faculty of Arts and Sciences, Department of Biology, Amasya University, Ipekkoy, 05100, Amasya, Turkey.
| |
Collapse
|