1
|
Lu Y, Li T, Li R, Zhang P, Li X, Bai Z, Wu J. Role of SbNRT1.1B in cadmium accumulation is attributed to nitrate uptake and glutathione-dependent phytochelatins biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135655. [PMID: 39217923 DOI: 10.1016/j.jhazmat.2024.135655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Phytoremediation of cadmium (Cd)-polluted soil by using sweet sorghum displays a tremendous potential as it is a fast-growing, high biomass and Cd tolerant energy plant. Previous study has demonstrated SbNRT1.1B expression change is in accordance with enhanced Cd accumulation by external nitrate supply in sweet sorghum. Nevertheless, underlying mechanism of SbNRT1.1B response to Cd stress is still elusive. SbNRT1.1B exhibited a positive response to Cd stress in sweet sorghum. Overexpressing SbNRT1.1B increased primary root length, shoot fresh weight, nitrate and chlorophyll concentrations compared with Col-0 under Cd stress, while complementary SbNRT1.1B rescued these decreased values in mutant chl1-5. Cd concentrations in overexpressing SbNRT1.1B, complementary SbNRT1.1B and Col-0 lines were 3.2-4.1, 2.5-3.1 and 1.2-2.1 folds of that in chl1-5. Consistent with Cd concentrations, non-protein thiol (NPT), reduced glutathione (GSH) and phytochelatins (PCs) concentrations as well as the related genes expression levels showed the same trends under Cd stress. GSH biosynthesis inhibitor failed to reverse the patterns of GSH-dependent PCs concentrations changes in different lines, suggesting that SbNRT1.1B plays an upstream role in GSH-dependent PCs biosynthesis under Cd treatment. Altogether, SbNRT1.1B enhances nitrate concentrations contributing to increased chlorophyll concentrations and GSH-dependent PCs metabolites biosynthesis, thereby improving growth and Cd concentrations in plants.
Collapse
Affiliation(s)
- Yuan Lu
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Ting Li
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Ruijuan Li
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Pan Zhang
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - XiaoXiao Li
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Zhenqing Bai
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Jiawen Wu
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China.
| |
Collapse
|
2
|
Zhang P, Li J, Li T, Li X, Lu Y, Wu J. Transcriptome analysis of potassium-mediated cadmium accumulation in sweet sorghum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109064. [PMID: 39191042 DOI: 10.1016/j.plaphy.2024.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Cadmium (Cd) pollution in the soil is a serious environmental issue worldwide. Phytoextraction of Cd-polluted soil is a cost-effective, sustainable and environmentally-friendly strategy. Agricultural fertilizer management is beneficial for promoting the Cd phytoremediation efficiency. Potassium (K) is the nutrient required in the largest amount cation by plants. Sweet sorghum exhibits a substantial phytoremediation potential of Cd-polluted soil. Clarifying the mechanism of K-mediated Cd accumulation in sweet sorghum is imperative. Sweet sorghum plants were grown hydroponically with an extra K supply in the presence or absence of Cd treatment. An extra K application significantly increased plant growth under non-Cd addition, while K lost the profitable effect under Cd stress. K supplementation remarkably enhanced Cd concentrations and Cd accumulation in shoots and roots of sweet sorghum. Transcriptome analysis demonstrated that zinc ion transport, cysteine and methionine metabolism, flavonoid biosynthesis and phenylpropanoid biosynthesis pathways might contribute to the increased Cd accumulation as affected by an extra K supply. Furthermore, SbZIP9, SbSTP8, SbYS1, SbMAG and SbFOMT-like were targeted as they closely correlated with both plant growth and Cd stress in sweet sorghum. SbFOMT-like showed an independent pathway, while SbZIP9, SbSTP8, SbYS1 and SbMAG displayed positive correlations mutually. Notably, SbZIP9 and SbFOMT-like were highly expressed when compared with other target genes. Taken together, SbZIP9 and SbFOMT-like were upregulated and downregulated by an extra K supply under Cd stress, suggesting that SbZIP9 and SbFOMT-like enhances and declines Cd accumulation as regulated by K addition in sweet sorghum respectively.
Collapse
Affiliation(s)
- Pan Zhang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Juan Li
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources of the People's Republic of China, Xi'an, 710075, China
| | - Ting Li
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Xiaoxiao Li
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yuan Lu
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Jiawen Wu
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China.
| |
Collapse
|
3
|
Ofori-Agyemang F, Burges A, Waterlot C, Lounès-Hadj Sahraoui A, Tisserant B, Mench M, Oustrière N. Phytomanagement of a metal-contaminated agricultural soil with Sorghum bicolor, humic / fulvic acids and arbuscular mycorrhizal fungi near the former Pb/Zn metaleurop Nord smelter. CHEMOSPHERE 2024; 362:142624. [PMID: 38889872 DOI: 10.1016/j.chemosphere.2024.142624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
As many contaminated agricultural soils can no longer be used for food crops, lignocellulosic energy crops matter due to their ability to grow on such soils and to produce biomass for biosourced materials and biofuels, thereby reducing the pressure on the limited arable lands. Sorghum bicolor (L.) Moench, can potentially produce a high biomass suitable for producing bioethanol, renewable gasoline, diesel, and sustainable aircraft fuel, despite adverse environmental conditions (e.g. drought, contaminated soils). A 2-year field trial was carried out for the first time in the northern France for assessing sorghum growth on a Cd, Pb and Zn-contaminated agricultural soil amended with humic/fulvic acid, alone and paired with arbuscular mycorrhizal fungi. Sorghum produced on average (in t DW ha-1): 12.4 in year 1 despite experiencing a severe drought season and 15.3 in year 2. Humic/fulvic acids (Lonite 80SP®) and arbuscular mycorrhizal fungi did not significantly act as biostimulants regarding the shoot DW yield and metal uptake of sorghum. The annual shoot Cd, Pb and Zn removals averaged 0.14, 0.20 and 1.97 kg ha-1, respectively. Sorghum cultivation and its metal uptake induced a significant decrease in 0.01 M Ca(NO3)2-extractable soil Cd, Pb and Zn concentrations by 95%, 73% and 95%, respectively, in year 2. Soluble and exchangeable soil Cd, Pb and Zn would be progressively depleted in subsequent crops, which should result in lower pollutant linkages and enhanced ecosystem services. This evidenced sorghum as a relevant plant species for phytomanaging the large area (750 ha) with metal-contaminated soil near the former Pb/Zn Metaleurop Nord smelter, amidst ongoing climate change. The potential bioethanol yield of the harvested sorghum biomass was 5589 L ha-1. Thus sorghum would be a promising candidate for bioethanol production, even in this northern French region.
Collapse
Affiliation(s)
- Felix Ofori-Agyemang
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Aritz Burges
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Christophe Waterlot
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France.
| | - Benoît Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France.
| | - Michel Mench
- Univ. Bordeaux, INRAE, BIOGECO, 33615 Pessac Cedex, France.
| | - Nadège Oustrière
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| |
Collapse
|
4
|
Chen Y, Wu X, Lin Z, Teng D, Zhao Y, Chen S, Hu X. Screening of cadmium resistant bacteria and their growth promotion of Sorghum bicolor (L.) Moench under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116012. [PMID: 38290308 DOI: 10.1016/j.ecoenv.2024.116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/26/2023] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
Heavy metal pollution of agricultural soils, especially from cadmium (Cd) contaminationcaused serious problems in both food security and economy. Sorghum bicolor (L.) showed a great potential in phytoremediation of Cd contamination due to its fast growth, high yield and easy harvesting. However, the growth of S. bicolor plants tends to be inhibited under Cd exposure, which limited its application for Cd remediation. Plant growth-promoting rhizobacteria may enhance the Cd resistance of S. bicolor and thus improve its Cd removal efficiency. In this study, three Cd-resistant bacteria were screened based on Cd and acid tolerance and identified as Bacillus velezensis QZG6, Enterobacter cloacae QZS3 and Bacillus cereus QZS8, by 16S rRNA sequencing. Inoculation of hydroponic plants with strains QZG6, QZS3 or QZS8 significantly promoted the biomass of sorghum plants by 31.52%, 50.20% and 26.93%, respectively, compared with those of uninoculated plants under Cd exposure. The activity of SOD, POD and MDA content in Cd-stressed S. bicolor plants were reduced of 65.74%, 31.52%, and 80.91%, respectively, when inoculated with the strains QZS3. For pot experiment, strains QZG6, QZS3 and QZS8 significantly promoted the biomass of sorghum plants by 47.30%, 19.27% and 58.47%, compared with those of uninoculated plants under Cd exposure. The activity of SOD, POD and MDA content in Cd-stressed S. bicolor plants were reduced of 67.20%, 22.40%, and 40.65%, respectively, when inoculated with the strains QZS3. All these three strains significantly increased the Cd removal efficiency of the plants by 42.16% (QZG6), 18.76% (QZS3) and 21.06% (QZS8). To investigate the bacterial characteristics associated with growth promotion of S. bicolor plants, the ability on nitrogen fixation, phosphorus solubilization, siderophores production, and phytohormones production were determined. All the strains were able to fix nitrogen. Phosphorus release was observed for strains QZG6 (inorganic or organic phosphorus) and QZS3 (inorganic phosphorus). Both QZG6 and QZS8 were able to produce siderophores, while only QZG6 was positive for ACC deaminase. All the strains produced IAA, SA and GA. These results indicated that the three strains promoted the plant growth under Cd stress, probably through Cd detoxification by siderophores, as well as through growth regulation by N/P nutrient supply and phytohormone. The present study showed a great potential of the three Cd-resistant strains combined with S. bicolor plants in the remediation of Cd-polluted soils, which may provide a new insight into combining the advantages of microbes and plants to improve the remediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinlin Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengxin Lin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dezheng Teng
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yaming Zhao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shaoning Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiufang Hu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
5
|
de Souza Junior JC, Monteiro FA. Nitrate fertilization enhances manganese phytoextraction in Tanzania guinea grass: a novel hyperaccumulator plant? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9661-9670. [PMID: 38194170 DOI: 10.1007/s11356-023-31548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024]
Abstract
Manganese (Mn) is essential for plants but very toxic at high rates. However, hyperaccumulators can tolerate high Mn concentrations in plant tissue, especially when properly fertilized with N. Tanzania guinea grass (Megathyrsus maximus Jacq.) has been indicated as metal tolerant and a good candidate for Mn phytoextraction due to its fast growth and high biomass. The objective was to evaluate the Mn hyperaccumulator potential of Tanzania guinea grass grown as affected by proportions of nitrate/ammonium (NO3-/NH4+). An experiment in a growth chamber with nutrient solution, combining NO3-/NH4+ proportions (100/0 and 70/30) and Mn rates (10, 500, 1500, and 3000 μmol L-1), was carried out. The highest Mn concentration was verified in plants grown with 100/0 NO3-/NH4+ and Mn at 3000 μmol L-1, reaching up to 5500 and 21,187 mg kg-1 in shoots and roots, respectively, an overall concentration of 13,345 mg kg-1. These numbers are typically seen in hyperaccumulators. At that combination, Mn accumulation in shoots was also the highest, reaching up to 76.2 mg per pot, a phytoextraction rate of 23.1%. Excess Mn increased both H2O2 concentration in roots and non-photochemical quenching and therefore decreased net photosynthesis, stomatal conductance, electron transport rate, and photochemical quenching. Nevertheless, proline concentration in roots affected by excess Mn was high and indicates its important role for mitigating stress since Mn rates did not even affect the dry biomass. Tanzania guinea grass is highly tolerant to excess Mn as much as a hyperaccumulator. However, to show all its potential, the grass needs to be supplied with N as NO3-. We indicate Tanzania guinea grass as a Mn hyperaccumulator plant.
Collapse
Affiliation(s)
| | - Francisco Antonio Monteiro
- "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
6
|
Yan J, Wang L, Xing C, Ma S, Xu J, Shou B, Lan S, Wu X, Cai M. Graphitic carbon nitride alleviates cadmium toxicity to microbial communities in soybean rhizosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94988-95001. [PMID: 37542018 DOI: 10.1007/s11356-023-29040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
Cadmium (Cd) contamination has led to various harmful impacts on soil microbial ecosystem, agricultural crops, and thus human health. Nanomaterials are promising candidates for reducing the accumulation of heavy metals in plants. In this study, graphitic carbon nitride (g-C3N4), a two-dimensional polymeric nanomaterial, was applied for ameliorating Cd phytotoxicity to soybean (Glycine max (L.) Merr.). Its impacts on rhizosphere variables, microorganisms, and metabolism were examined. It was found that g-C3N4 increased carbon/nitrogen/phosphorus (C/N/P) content, especially when N contents were averagely 4.2 times higher in the g-C3N4-treated groups. g-C3N4 significantly induced alterations in microbial community structures (P < 0.05). The abundance of the probiotics class Nitrososphaeria was enriched (on average 70% higher in the g-C3N4-treated groups) as was Actinobacteria (226% higher in the g-C3N4 group than in the CK group). At the genus level, g-C3N4 recruited more Bradyrhizobium (122% higher) in the Cd + g-C3N4 group than in the Cd group and more Sphingomonas (on average 24% higher) in the g-C3N4-treated groups. The changes of microbial clusters demonstrated the potential of g-C3N4 to shape microbial functions, promote plant growth, and enhance Cd resistance, despite observing less pronounced modifications in microbial communities in Cd-contaminated soil compared to Cd-free soil. Moreover, abundance of functional genes related to C/N/P transformation was more significantly promoted by g-C3N4 in Cd-contaminated soil (increased by 146%) than in Cd-free one (increased by 32.8%). Therefore, g-C3N4 facilitated enhanced microbial survival and adaptation through the amplification of functional genes. These results validated the alleviation of g-C3N4 on the microbial communities in the soybean rhizosphere and shed a new light on the application of environmental-friendly nanomaterials for secure production of the crop under soil Cd exposure.
Collapse
Affiliation(s)
- Jianfang Yan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Liping Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Chenghua Xing
- College of Agriculture, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, People's Republic of China
| | - Shuting Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Junzhe Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Beiyi Shou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Shasha Lan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Xilin Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China.
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China.
| |
Collapse
|
7
|
Xie H, Liao Z, Li J, Yang Y, Chen F, Zhu R, Xiang L, Wu S. Effects of exogenous calcium on cadmium accumulation in amaranth. CHEMOSPHERE 2023; 326:138435. [PMID: 36933838 DOI: 10.1016/j.chemosphere.2023.138435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Calcium oxalate (CaOx) crystals in plants act as a sink for excess Ca and play an essential role in detoxifying heavy metals (HMs). However, the mechanism and related influencing factors remain unclear. Amaranth (Amaranthus tricolor L.) is a common edible vegetable rich in CaOx and a potential Cd hyperaccumulation species. In this study, the hydroponic experiment was carried out to investigate the effect of exogenous Ca concentrations on Cd uptake by amaranth. The results showed that either insufficient or excess Ca supply inhibited amaranth growth, while the Cd bioconcentration factor (BCF) increased with Ca concentration. Meanwhile, the sequence extraction results demonstrated that Cd mainly accumulated as pectate and protein-bound species (NaCl extracted) in the root and stem, compared to pectate, protein, and phosphate-bound (acetic acid extractable) species in the leaf. Correlation analysis showed that the concentration of exogenous Ca was positively correlated with amaranth-produced CaOx crystals but negatively correlated with insoluble oxalate-bound Cd in the leaf. However, since the accumulated insoluble oxalate-bound Cd was relatively low, Cd detoxification via the CaOx pathway in amaranth is limited.
Collapse
Affiliation(s)
- Hong Xie
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049, Beijing, China
| | - Zisheng Liao
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049, Beijing, China
| | - Jun Li
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049, Beijing, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China
| | - Li Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China.
| |
Collapse
|
8
|
Jiao Z, Shi Y, Wang J, Wang Z, Zhang X, Jia X, Du Q, Niu J, Liu B, Du R, Ji G, Cao J, Lv P. Integration of transcriptome and metabolome analyses reveals sorghum roots responding to cadmium stress through regulation of the flavonoid biosynthesis pathway. FRONTIERS IN PLANT SCIENCE 2023; 14:1144265. [PMID: 36909379 PMCID: PMC9996021 DOI: 10.3389/fpls.2023.1144265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) pollution is a serious threat to plant growth and human health. Although the mechanisms controlling the Cd response have been elucidated in other species, they remain unknown in Sorghum (Sorghum bicolor (L.) Moench), an important C4 cereal crop. Here, one-week-old sorghum seedlings were exposed to different concentrations (0, 10, 20, 50, 100, and 150 μM) of CdCl2 and the effects of these different concentrations on morphological responses were evaluated. Cd stress significantly decreased the activities of the enzymes peroxidase (POD), superoxide dismutase (SOD), glutathione S-transferase (GST) and catalase (CAT), and increased malondialdehyde (MDA) levels, leading to inhibition of plant height, decreases in lateral root density and plant biomass production. Based on these results, 10 μM Cd concentration was chosen for further transcription and metabolic analyses. A total of 2683 genes and 160 metabolites were found to have significant differential abundances between the control and Cd-treated groups. Multi-omics integrative analysis revealed that the flavonoid biosynthesis pathway plays a critical role in regulating Cd stress responses in sorghum. These results provide new insights into the mechanism underlying the response of sorghum to Cd.
Collapse
Affiliation(s)
- Zhiyin Jiao
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Yannan Shi
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Jinping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Zhifang Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Xing Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Xinyue Jia
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Qi Du
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Jingtian Niu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Bocheng Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Ruiheng Du
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Guisu Ji
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Junfeng Cao
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Lv
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| |
Collapse
|
9
|
Wu J, Zhao N, Zhang P, Zhu L, Lu Y, Lei X, Bai Z. Nitrate enhances cadmium accumulation through modulating sulfur metabolism in sweet sorghum. CHEMOSPHERE 2023; 313:137413. [PMID: 36455657 DOI: 10.1016/j.chemosphere.2022.137413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/11/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Sweet sorghum deploys tremendous potential for phytoremediation of cadmium (Cd)-polluted soils. Nitrate increases Cd accumulation in sweet sorghum, but the mechanism underlying this is still elusive. Sulfur-containing metabolites have been corroborated to play important roles in Cd tolerance in plants. Thus, whether sulfur metabolism contributed to nitrate-increased Cd accumulation in sweet sorghum was investigated in the present study. Two-way ANOVA analysis showed that most sulfur-containing metabolites concentrations and relevant enzymes activities were regulated by nitrate, Cd and interplay of nitrate and Cd. By using grey correlation analysis and Pearson correlation coefficient, Cd accumulation in shoots as affected by nitrate was also mainly ascribed to sulfur metabolism. ATP sulfurylase (ATPS) activities and non-protein thiol (NPT) concentrations in leaves were the two prominent factors that positively correlated with Cd accumulation in shoots. Excess nitrate elevated ATPS activities in leaves which contributed to increased NPT and phytochelatins (PCs) concentrations in leaves. Nitrate enhanced Cd accumulation in shoots of sweet sorghum under a low level of Cd treatment. Intriguingly, Cd accumulation in shoots of sweet sorghum was similar between a low level and a high level of Cd treatment. Principal Components Analysis (PCA) based on 34 parameters failed to separate the low Cd treatment from the high Cd treatment either, suggesting sweet sorghum is exclusively suitable for phytoremediation of slight Cd-polluted arable lands. Taken together, enhanced Cd accumulation in shoots of sweet sorghum by excess nitrate application is closely correlated with sulfur metabolism containing elevated ATPS activities, NPT and PCs concentrations in leaves.
Collapse
Affiliation(s)
- Jiawen Wu
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China.
| | - Na Zhao
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Pan Zhang
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Lin Zhu
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yuan Lu
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Xin Lei
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Zhenqing Bai
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China.
| |
Collapse
|
10
|
Xiao MZ, Sun Q, Hong S, Chen WJ, Pang B, Du ZY, Yang WB, Sun Z, Yuan TQ. Sweet sorghum for phytoremediation and bioethanol production. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00074-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractAs an energy crop, sweet sorghum (Sorghum bicolor (L.) Moench) receives increasing attention for phytoremediation and biofuels production due to its good stress tolerance and high biomass with low input requirements. Sweet sorghum possesses wide adaptability, which also has high tolerances to poor soil conditions and drought. Its rapid growth with the large storage of fermentable saccharides in the stalks offers considerable scope for bioethanol production. Additionally, sweet sorghum has heavy metal tolerance and the ability to remove cadmium (Cd) in particular. Therefore, sweet sorghum has great potential to build a sustainable phytoremediation system for Cd-polluted soil remediation and simultaneous ethanol production. To implement this strategy, further efforts are in demand for sweet sorghum in terms of screening superior varieties, improving phytoremediation capacity, and efficient bioethanol production. In this review, current research advances of sweet sorghum including agronomic requirements, phytoremediation of Cd pollution, bioethanol production, and breeding are discussed. Furthermore, crucial problems for future utilization of sweet sorghum stalks after phytoremediation are combed.
Graphical Abstract
Collapse
|
11
|
Wu J, Li R, Lu Y, Bai Z. Sustainable management of cadmium-contaminated soils as affected by exogenous application of nutrients: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113081. [PMID: 34171783 DOI: 10.1016/j.jenvman.2021.113081] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) pollution in arable land is of great concern as it impairs plant growth and further threats human health via food-chain. Exogenous supplementation of nutrients is an environmentally-friendly, cost-effective, convenient and feasible strategy for regulating Cd uptake, transport and accumulation in plants. To sustain Cd-contaminated soils management, on the one hand, a low level of the Cd-contaminated soil is expected to cultivate crops with decreased Cd accumulation as affected by exogenous nutrients application, on another hand, a high level of the Cd-contaminated soil is suggested to cultivate phytoextraction plants with increased Cd accumulation as affected by exogenous nutrients application. Nevertheless, effects of nutrients on Cd accumulation in plants are still ambiguous. Thus, data of Cd accumulation in shoots of plants as affected by exogenous application of nutrients were collected from previously published articles between 2005 and 2021 in the present study. According to the data, exogenous supply of calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn) and silicon (Si) to a larger extent decrease Cd amounts in shoots of plants. By contrast, exogenous nitrogen (N), and deficient Ca, Mg and Fe supply have a great possibility to increase Cd amounts in shoots of plants. Although exogenous application of phosphorus (P), sulfur (S), potassium (K), zinc (Zn) and selenium (Se) have a great opportunity to increase biomass, they show different effects on Cd concentrations. As a result, the odds are even for increasing and decreasing Cd amounts in shoots of plants. Taken together, exogenous application of Ca, Mg, Fe, Mn and Si might decrease Cd accumulation in plants that are recommended for crops production. Exogenous N and deficient Ca, Mg and Fe supply might increase Cd accumulation in plants that are recommended for phytoextraction plants. Exogenous application of P, S, K, Zn and Se have half a chance to increase or decrease Cd accumulation in plants. Therefore, dosages, forms and species should be taken into account when exogenous P, S, K, Zn and Se are added.
Collapse
Affiliation(s)
- Jiawen Wu
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China.
| | - Ruijuan Li
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yuan Lu
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Zhenqing Bai
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| |
Collapse
|
12
|
Bai Z, Li D, Zhu L, Tang X, Wang Y, Mao R, Wu J. Nitrate Increases Cadmium Accumulation in Sweet Sorghum for Improving Phytoextraction Efficiency Rather Than Ammonium. FRONTIERS IN PLANT SCIENCE 2021; 12:643116. [PMID: 34093607 PMCID: PMC8172601 DOI: 10.3389/fpls.2021.643116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/26/2021] [Indexed: 05/05/2023]
Abstract
Sweet sorghum has potential for phytoextraction of cadmium (Cd) owning to its large biomass and relatively high Cd tolerance. Nitrogen affects both growth and Cd concentrations in plants. However, different forms of nitrogen effects on Cd accumulation in sweet sorghum to improve efficiency of Cd phytoremediation is still elusive. In this study, nitrate substantially promoted both dry weight and Cd concentrations in leaves, stems + sheaths and roots of sweet sorghum when compared with ammonium. As a result, Cd accumulation in nitrate-supplied sweet sorghum was around 3.7-fold of that in ammonium-supplied plants under unbuffered pH condition, while the fold was about 2.2 under buffered pH condition. We speculated pH values and Cd species in the growth medium to some extent contributed to increased Cd accumulation as affected by nitrate. Net photosynthesis rate and Fv/Fm of nitrate-treated plants under Cd stress were higher than that of ammonium-treated plants when the pH was unbuffered. Responses of antioxidant capacity in roots to Cd stress with nitrate application were stronger than that with ammonium supplementation. Taken together, nitrate is more suitable than ammonium for Cd phytoextraction by using sweet sorghum, which is able to enhance at least double efficiency of phytoextraction.
Collapse
Affiliation(s)
- Zhenqing Bai
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Dan Li
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Lin Zhu
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Xiaoyu Tang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Yanfeng Wang
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Renjun Mao
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Jiawen Wu
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Life Sciences, Yan’an University, Yan’an, China
- *Correspondence: Jiawen Wu, ; orcid.org/0000-0001-8646-126X
| |
Collapse
|