1
|
Montesinos D. Trade-offs involved in the choice of pot vs field experiments. THE NEW PHYTOLOGIST 2025; 245:1808-1809. [PMID: 39564914 DOI: 10.1111/nph.20292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This article is a Commentary on Zhu et al. (2025), 245: 2202–2213.
Collapse
Affiliation(s)
- Daniel Montesinos
- Australian Tropical Herbarium, James Cook University, Cairns, Qld, Australia
- College of Science and Engineering, James Cook University, Cairns, Qld, Australia
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Santamarina S, Mateo RG, Alfaro-Saiz E, Acedo C. On the importance of invasive species niche dynamics in plant conservation management at large and local scale. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1049142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Predicting the distribution of Invasive alien species (IAS) using species distribution models is promising for conservation planning. To achieve accurate predictions, it is essential to explore species niche dynamics. New approaches are necessary for bringing this analysis to real conservation management needs. Using multi-site comparisons can provide great useful insights to better understand invasion processes. Exploring the fine-scale niche overlap between IAS and native species sharing a location can be a key tool for achieving the implementation of local species conservation actions, which can play a fundamental role in the global management of IAS. This can also increase society’s awareness of the threat of IAS. In this context, here, we explored two key research demands. First, we studied the large-scale niche dynamics of the invasive species Paraserianthes lophantha (Willd.) I.C. Nielsen’s considering different invaded areas. The analysis compared niches of the native range (South Western Australia) with the Australian invaded range (eastern Australia); the native range with the European invaded range, and its full Australian range (native plus invaded range) with the European invaded range. Second, we perform a fine-scale niche overlap analysis at landscape scale in Spain. We studied the niche overlap between P. lophantha and a species with remarkable conservation interest (Quercus lusitanica Lam). All the niche analyses were realized following a well-established ordination (principal component analysis) approach where important methodological aspects were compared and analyzed. Our multi-site study of P. lophantha large-scale niche dynamics detected niche shifts between the Australian ranges demonstrating that the species is labile and may potentially adapt to further European climate conditions and spread its invasive range. Comparative analysis between the European and the full Australian ranges supports that calibrate models including the Australian invasive information is promising to accurate predict P. lophantha European potential distribution. The fine-scale study of niche overlap further explained the potential of this IAS and can be used as a model example of how these local studies can be used to promote the implementation of conservation actions in situ as a complement to large-scale management strategies.
Collapse
|
3
|
Schuldt B, Ruehr NK. Responses of European forests to global change-type droughts. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1093-1097. [PMID: 36445187 DOI: 10.1111/plb.13484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Affiliation(s)
- B Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Dresden, Germany
| | - N K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| |
Collapse
|
4
|
Werner C. Extreme droughts and heatwaves endanger temperate forests. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1091-1092. [PMID: 36445188 DOI: 10.1111/plb.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|