1
|
Tóth D, Tengölics R, Aarabi F, Karlsson A, Vidal-Meireles A, Kovács L, Kuntam S, Körmöczi T, Fernie AR, Hudson EP, Papp B, Tóth SZ. Chloroplastic ascorbate modifies plant metabolism and may act as a metabolite signal regardless of oxidative stress. PLANT PHYSIOLOGY 2024; 196:1691-1711. [PMID: 39106412 PMCID: PMC11444284 DOI: 10.1093/plphys/kiae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 08/09/2024]
Abstract
Ascorbate (Asc) is a major plant metabolite that plays crucial roles in various processes, from reactive oxygen scavenging to epigenetic regulation. However, to what extent and how Asc modulates metabolism is largely unknown. We investigated the consequences of chloroplastic and total cellular Asc deficiencies by studying chloroplastic Asc transporter mutant lines lacking PHOSPHATE TRANSPORTER 4; 4 and the Asc-deficient vtc2-4 mutant of Arabidopsis (Arabidopsis thaliana). Under regular growth conditions, both Asc deficiencies caused minor alterations in photosynthesis, with no apparent signs of oxidative damage. In contrast, metabolomics analysis revealed global and largely overlapping alterations in the metabolome profiles of both Asc-deficient mutants, suggesting that chloroplastic Asc modulates plant metabolism. We observed significant alterations in amino acid metabolism, particularly in arginine metabolism, activation of nucleotide salvage pathways, and changes in secondary metabolism. In addition, proteome-wide analysis of thermostability revealed that Asc may interact with enzymes involved in arginine metabolism, the Calvin-Benson cycle, and several photosynthetic electron transport components. Overall, our results suggest that, independent of oxidative stress, chloroplastic Asc modulates the activity of diverse metabolic pathways in vascular plants and may act as an internal metabolite signal.
Collapse
Affiliation(s)
- Dávid Tóth
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
- Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged H-6722, Hungary
| | - Roland Tengölics
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, Szeged H-6726, Hungary
- Metabolomics Lab, Core Facilities, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Anna Karlsson
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, PO Box 1031, Solna 171 21, Sweden
| | - André Vidal-Meireles
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - László Kovács
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Soujanya Kuntam
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Tímea Körmöczi
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Elton P Hudson
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, PO Box 1031, Solna 171 21, Sweden
| | - Balázs Papp
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, Szeged H-6726, Hungary
- National Laboratory for Health Security, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Szilvia Z Tóth
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
2
|
Tóth D, Kuntam S, Ferenczi Á, Vidal-Meireles A, Kovács L, Wang L, Sarkadi Z, Migh E, Szentmihályi K, Tengölics R, Neupert J, Bock R, Jonikas MC, Molnar A, Tóth SZ. Chloroplast phosphate transporter CrPHT4-7 regulates phosphate homeostasis and photosynthesis in Chlamydomonas. PLANT PHYSIOLOGY 2024; 194:1646-1661. [PMID: 37962583 PMCID: PMC10904345 DOI: 10.1093/plphys/kiad607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
In eukaryotic cells, phosphorus is assimilated and utilized primarily as phosphate (Pi). Pi homeostasis is mediated by transporters that have not yet been adequately characterized in green algae. This study reports on PHOSPHATE TRANSPORTER 4-7 (CrPHT4-7) from Chlamydomonas reinhardtii, a member of the PHT4 transporter family, which exhibits remarkable similarity to AtPHT4;4 from Arabidopsis (Arabidopsis thaliana), a chloroplastic ascorbate transporter. Using fluorescent protein tagging, we show that CrPHT4-7 resides in the chloroplast envelope membrane. Crpht4-7 mutants, generated by the CRISPR/Cas12a-mediated single-strand templated repair, show retarded growth, especially in high light, reduced ATP level, strong ascorbate accumulation, and diminished non-photochemical quenching in high light. On the other hand, total cellular phosphorous content was unaffected, and the phenotype of the Crpht4-7 mutants could not be alleviated by ample Pi supply. CrPHT4-7-overexpressing lines exhibit enhanced biomass accumulation under high light conditions in comparison with the wild-type strain. Expressing CrPHT4-7 in a yeast (Saccharomyces cerevisiae) strain lacking Pi transporters substantially recovered its slow growth phenotype, demonstrating that CrPHT4-7 transports Pi. Even though CrPHT4-7 shows a high degree of similarity to AtPHT4;4, it does not display any substantial ascorbate transport activity in yeast or intact algal cells. Thus, the results demonstrate that CrPHT4-7 functions as a chloroplastic Pi transporter essential for maintaining Pi homeostasis and photosynthesis in C. reinhardtii.
Collapse
Affiliation(s)
- Dávid Tóth
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
- Doctoral School of Biology, University of Szeged, H-6722 Szeged, Hungary
| | - Soujanya Kuntam
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - Áron Ferenczi
- Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - André Vidal-Meireles
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ 08544, USA
| | - Zsuzsa Sarkadi
- Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine—Biological Research Centre Metabolic Systems Biology Research Group, H-6726 Szeged, Hungary
| | - Ede Migh
- Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - Klára Szentmihályi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Roland Tengölics
- Hungarian Centre of Excellence for Molecular Medicine—Biological Research Centre Metabolic Systems Biology Research Group, H-6726 Szeged, Hungary
- Metabolomics Lab, Core Facilities, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - Juliane Neupert
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Princeton University, Lewis Thomas Laboratory, Princeton, NJ 08544, USA
| | - Attila Molnar
- Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Szilvia Z Tóth
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| |
Collapse
|
3
|
Hallin EI, Hasan M, Guo K, Åkerlund HE. Molecular studies on structural changes and oligomerisation of violaxanthin de-epoxidase associated with the pH-dependent activation. PHOTOSYNTHESIS RESEARCH 2016; 129:29-41. [PMID: 27116125 DOI: 10.1007/s11120-016-0261-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/04/2016] [Indexed: 05/25/2023]
Abstract
Violaxanthin de-epoxidase (VDE) is a conditionally soluble enzyme located in the thylakoid lumen and catalyses the conversion of violaxanthin to antheraxanthin and zeaxanthin, which are located in the thylakoid membrane. These reactions occur when the plant or algae are exposed to saturating light and the zeaxanthin formed is involved in the process of non-photochemical quenching that protects the photosynthetic machinery during stress. Oversaturation by light results in a reduction of the pH inside the thylakoids, which in turn activates VDE and the de-epoxidation of violaxanthin. To elucidate the structural events responsible for the pH-dependent activation of VDE, full length and truncated forms of VDE were studied at different pH using circular dichroism (CD) spectroscopy, crosslinking and small angle X-ray scattering (SAXS). CD spectroscopy showed the formation of α-helical coiled-coil structure, localised in the C-terminal domain. Chemical crosslinking of VDE showed that oligomers were formed at low pH, and suggested that the position of the N-terminal domain is located near the opening of lipocalin-like barrel, where violaxanthin has been predicted to bind. SAXS was used to generate models of monomeric VDE at high pH and also a presumably dimeric structure of VDE at low pH. For the dimer, the best fit suggests that the interaction is dominated by one of the domains, preferably the C-terminal domain due to the lost ability to oligomerise at low pH, shown in earlier studies, and the predicted formation of coiled-coil structure.
Collapse
Affiliation(s)
- Erik Ingmar Hallin
- Department of Biochemistry and Structural Biology, Lund University, POB 124, 221 00, Lund, Sweden
| | - Mahmudul Hasan
- Department of Biochemistry and Structural Biology, Lund University, POB 124, 221 00, Lund, Sweden
| | - Kuo Guo
- Department of Biochemistry and Structural Biology, Lund University, POB 124, 221 00, Lund, Sweden
| | - Hans-Erik Åkerlund
- Department of Biochemistry and Structural Biology, Lund University, POB 124, 221 00, Lund, Sweden.
| |
Collapse
|