1
|
Cheaib M, Nguyen HT, Couderc M, Serret J, Soriano A, Larmande P, Richter C, Junker BH, Raorane ML, Petitot AS, Champion A. Transcriptomic and metabolomic reveal OsCOI2 as the jasmonate-receptor master switch in rice root. PLoS One 2024; 19:e0311136. [PMID: 39466751 PMCID: PMC11516173 DOI: 10.1371/journal.pone.0311136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
Jasmonate is an essential phytohormone involved in plant development and stress responses. Its perception occurs through the CORONATINE INSENSITIVE (COI) nuclear receptor allowing to target the Jasmonate-ZIM domain (JAZ) repressors for degradation by the 26S proteasome. Consequently, repressed transcription factors are released and expression of jasmonate responsive genes is induced. In rice, three OsCOI genes have been identified, OsCOI1a and the closely related OsCOI1b homolog, and OsCOI2. While the roles of OsCOI1a and OsCOI1b in plant defense and leaf senescence are well-established, the significance of OsCOI2 in plant development and jasmonate signaling has only emerged recently. To unravel the role of OsCOI2 in regulating jasmonate signaling, we examined the transcriptomic and metabolomic responses of jasmonate-treated rice lines mutated in both the OsCOI1a and OsCOI1b genes or OsCOI2. RNA-seq data highlight OsCOI2 as the primary driver of the extensive transcriptional reprogramming observed after a jasmonate challenge in rice roots. A series of transcription factors exhibiting an OsCOI2-dependent expression were identified, including those involved in root development or stress responses. OsCOI2-dependent expression was also observed for genes involved in specific processes or pathways such as cell-growth and secondary metabolite biosynthesis (phenylpropanoids and diterpene phytoalexins). Although functional redundancy exists between OsCOI1a/b and OsCOI2 in regulating some genes, oscoi2 plants generally exhibit a weaker response compared to oscoi1ab plants. Metabolic data revealed a shift from the primary metabolism to the secondary metabolism primarily governed by OsCOI2. Additionally, differential accumulation of oryzalexins was also observed in oscoi1ab and oscoi2 lines. These findings underscore the pivotal role of OsCOI2 in jasmonate signaling and suggest its involvement in the control of the growth-defense trade-off in rice.
Collapse
Affiliation(s)
| | | | - Marie Couderc
- DIADE, IRD, University Montpellier, Montpellier, France
| | - Julien Serret
- DIADE, IRD, University Montpellier, Montpellier, France
| | - Alexandre Soriano
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University Montpellier, Montpellier, France
| | | | - Chris Richter
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Björn H. Junker
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Manish L. Raorane
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
2
|
Li J, Liu H, Lv X, Wang W, Liang X, Chen L, Wang Y, Liu J. A key ABA biosynthetic gene OsNCED3 is a positive regulator in resistance to Nilaparvata lugens in Oryza sativa. FRONTIERS IN PLANT SCIENCE 2024; 15:1359315. [PMID: 38988632 PMCID: PMC11233810 DOI: 10.3389/fpls.2024.1359315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
The gene encoding 9-cis-epoxycarotenoid dioxygenase 3 (NCED3) functions in abscisic acid (ABA) biosynthesis, plant growth and development, and tolerance to adverse temperatures, drought and saline conditions. In this study, three rice lines were used to explore the function of OsNCED3, these included an OsNCED3-overexpressing line (OsNCED3-OE), a knockdown line (osnced3-RNAi) and wild-type rice (WT). These rice lines were infested with the brown plant hopper (BPH; Nilaparvata lugens) and examined for physiological and biochemical changes, hormone content, and defense gene expression. The results showed that OsNCED3 activated rice defense mechanisms, which led to an increased defense enzyme activity of superoxide dismutase, peroxidase, and polyphenol oxidase. The overexpression of OsNCED3 decreased the number of planthoppers and reduced oviposition and BPH hatching rates. Furthermore, the overexpression of OsNCED3 increased the concentrations of jasmonic acid, jasmonyl-isoleucine and ABA relative to WT rice and the osnced3-RNAi line. These results indicate that OsNCED3 improved the stress tolerance in rice and support a role for both jasmonates and ABA as defense compounds in the rice-BPH interaction.
Collapse
Affiliation(s)
- Jitong Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Hao Liu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Xinyi Lv
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Wenjuan Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Xinyan Liang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Lin Chen
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yiping Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jinglan Liu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Huang X, Zhang W, Liao Y, Ye J, Xu F. Contemporary understanding of transcription factor regulation of terpenoid biosynthesis in plants. PLANTA 2023; 259:2. [PMID: 37971670 DOI: 10.1007/s00425-023-04268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
KEY MESSAGE This review summarized how TFs function independently or in response to environmental factors to regulate terpenoid biosynthesis via fine-tuning the expression of rate-limiting enzymes. Terpenoids are derived from various species and sources. They are essential for interacting with the environment and defense mechanisms, such as antimicrobial, antifungal, antiviral, and antiparasitic properties. Almost all terpenoids have high medicinal value and economic performance. Recently, the control of enzyme genes on terpenoid biosynthesis has received a great deal of attention, but transcriptional factors regulatory network on terpenoid biosynthesis and accumulation has yet to get a thorough review. Transcription factors function as activators or suppressors independently or in response to environmental stimuli, fine-tuning terpenoid accumulation through regulating rate-limiting enzyme expression. This study investigates the advancements in transcription factors related to terpenoid biosynthesis and systematically summarizes previous works on the specific mechanisms of transcription factors that regulate terpenoid biosynthesis via hormone signal-transcription regulatory networks in plants. This will help us to better comprehend the regulatory network of terpenoid biosynthesis and build the groundwork for terpenoid development and effective utilization.
Collapse
Affiliation(s)
- Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
4
|
Wang L, Fu J, Shen Q, Wang Q. OsWRKY10 extensively activates multiple rice diterpenoid phytoalexin biosynthesis to enhance rice blast resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37186469 DOI: 10.1111/tpj.16259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Phytoalexin is the main chemical weapon against disease pathogens in plants. Rice produces a number of phytoalexins to defend pathogens, most of which belong to diterpenoid phytoalexins. Three biosynthetic gene clusters (BGCs) and a few non-cluster genes are responsible for rice diterpenoid phytoalexin biosynthesis. The corresponding regulatory mechanism of these phytoalexins in response to pathogen challenges still remains unclear. Here we identified a transcription factor, OsWRKY10, positively regulating rice diterpenoid phytoalexin biosynthesis. Knockout mutants of OsWRKY10 obtained by the CRISPR/Cas9 technology are more susceptible to Magnaporthe oryzae infection, while overexpression of OsWRKY10 enhances resistance to rice blast. Further analysis reveals that overexpression of OsWRKY10 increases accumulation of multiple rice diterpenoid phytoalexins and expression of genes in three BGCs and non-clustered genes in response to M. oryzae infection. Knockout of OsWRKY10 impairs upregulation of rice diterpenoid phytoalexin biosynthesis gene expression by blast pathogen and CuCl2 treatment. OsWRKY10 directly binds to the W-boxes or W-box-like elements (WLEs) of rice diterpenoid phytoalexin biosynthesis gene promoters to regulate the corresponding gene expression. This study identified an extensive regulator (OsWRKY10) with the broad transcriptional regulation on rice diterpenoid phytoalexin biosynthesis, providing the insight to characterize regulation of rice chemical defense for improving disease resistance.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinqin Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
5
|
Hickman DT, Comont D, Rasmussen A, Birkett MA. Novel and holistic approaches are required to realize allelopathic potential for weed management. Ecol Evol 2023; 13:e10018. [PMID: 37091561 PMCID: PMC10121234 DOI: 10.1002/ece3.10018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Allelopathy, that is, plant-plant inhibition via the release of secondary metabolites into the environment, has potential for the management of weeds by circumventing herbicide resistance. However, mechanisms underpinning allelopathy are notoriously difficult to elucidate, hindering real-world application either in the form of commercial bioherbicides or allelopathic crops. Such limited application is exemplified by evidence of limited knowledge of the potential benefits of allelopathy among end users. Here, we examine potential applications of this phenomenon, paying attention to novel approaches and influential factors requiring greater consideration, with the intention of improving the reputation and uptake of allelopathy. Avenues to facilitate more effective allelochemical discovery are also considered, with a view to stimulating the identification of new compounds and allelopathic species. Synthesis and Applications: We conclude that tackling increasing weed pressure on agricultural productivity would benefit from greater integration of the phenomenon of allelopathy, which in turn would be greatly served by a multi-disciplinary and exhaustive approach, not just through more effective isolation of the interactions involved, but also through greater consideration of factors which may influence them in the field, facilitating optimization of their benefits for weed management.
Collapse
Affiliation(s)
- Darwin T. Hickman
- Protecting Crops and the EnvironmentRothamsted ResearchHarpendenUK
- School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | - David Comont
- Protecting Crops and the EnvironmentRothamsted ResearchHarpendenUK
| | | | | |
Collapse
|
6
|
Desmedt W, Kudjordjie EN, Chavan SN, Zhang J, Li R, Yang B, Nicolaisen M, Mori M, Peters RJ, Vanholme B, Vestergård M, Kyndt T. Rice diterpenoid phytoalexins are involved in defence against parasitic nematodes and shape rhizosphere nematode communities. THE NEW PHYTOLOGIST 2022; 235:1231-1245. [PMID: 35460590 DOI: 10.1111/nph.18152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Rice diterpenoid phytoalexins (DPs) are secondary metabolites with a well known role in resistance to foliar pathogens. As DPs are also known to be produced and exuded by rice roots, we hypothesised that they might play an important role in plant-nematode interactions, and particularly in defence against phytoparasitic nematodes. We used transcriptome analysis on rice roots to analyse the effect of infection by the root-knot nematode Meloidogyne graminicola or treatment with resistance-inducing chemical stimuli on DP biosynthesis genes, and assessed the susceptibility of mutant rice lines impaired in DP biosynthesis to M. graminicola. Moreover, we grew these mutants and their wild-type in field soil and used metabarcoding to assess the effect of impairment in DP biosynthesis on rhizosphere and root nematode communities. We show that M. graminicola suppresses DP biosynthesis genes early in its invasion process and, conversely, that resistance-inducing stimuli transiently induce the biosynthesis of DPs. Moreover, we show that loss of DPs increases susceptibility to M. graminicola. Metabarcoding on wild-type and DP-deficient plants grown in field soil reveals that DPs significantly alter the composition of rhizosphere and root nematode communities. Diterpenoid phytoalexins are important players in basal and inducible defence against nematode pathogens of rice and help shape rice-associated nematode communities.
Collapse
Affiliation(s)
- Willem Desmedt
- Research Group Epigenetics and Defence, Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
| | - Enoch Narh Kudjordjie
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark
| | - Satish Namdeo Chavan
- Research Group Epigenetics and Defence, Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - Juan Zhang
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100024, China
| | - Riqing Li
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark
| | - Masaki Mori
- Institute of Agrobiological Sciences, NARO, Tsukuba, 305-8602, Japan
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Bartel Vanholme
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark
| | - Tina Kyndt
- Research Group Epigenetics and Defence, Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
7
|
Abubakar AS, Feng X, Gao G, Yu C, Chen J, Chen K, Wang X, Mou P, Shao D, Chen P, Zhu A. Genome wide characterization of R2R3 MYB transcription factor from Apocynum venetum revealed potential stress tolerance and flavonoid biosynthesis genes. Genomics 2022; 114:110275. [PMID: 35108591 DOI: 10.1016/j.ygeno.2022.110275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
Abstract
MYB transcription factors are crucial in regulating stress tolerance and expression of major genes involved in flavonoid biosynthesis. The functions of MYBs is well explored in a number of plants, yet no studies is reported in Apocynum venetum. We identified a total of 163 MYB candidates, that comprised of 101 (61.96%) R2R3, 6 3R, 1 4R and 55 1R. Syntenic analysis of A. venetum R2R3 (AvMYB) showed highest orthologous pairs with Vitis vinifera MYBs followed by Arabidopsis thaliana among the four species evaluated. Thirty segmental duplications and 6 tandem duplications were obtained among AvMYB gene pairs signifying their role in the MYB gene family expansion. Nucleotide substitution analysis (Ka/Ks) showed the AvMYBs to be under the influence of strong purifying selection. Expression analysis of selected AvMYB under low temperature and cadmium stresses resulted in the identification of AvMYB48, AvMYB97, AvMYB8,AvMYB4 as potential stress responsive genes and AvMYB10 and AvMYB11 in addition, proanthocyanidin biosynthesis regulatory genes which is consistent with their annotated homologues in Arabidopsis. Tissue specific expression profile analysis of AvMYBs further supported the qPCR analysis result. MYBs with higher transcript levels in root, stem and leaf like AvMYB4 forexample, was downregulated under the stresses and such with low transcript level such as AvMYB48 which had low transcript in the leaf was upregulated under both stresses. Transcriptome and phylogenetic analysis suggested AvMYB42 as a potential regulator of anthocyanin biosynthesis. Thus, this study provided valuable information on AvR2R3-MYB gene family with respect to stress tolerance and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Department of Agronomy, Bayero University, Kano, PMB 3011, Kano, Nigeria
| | - Xinkang Feng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chunming Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Pan Mou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Deyi Shao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
8
|
Ding Y, Northen TR, Khalil A, Huffaker A, Schmelz EA. Getting back to the grass roots: harnessing specialized metabolites for improved crop stress resilience. Curr Opin Biotechnol 2021; 70:174-186. [PMID: 34129999 DOI: 10.1016/j.copbio.2021.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Roots remain an understudied site of complex and important biological interactions mediating plant productivity. In grain and bioenergy crops, grass root specialized metabolites (GRSM) are central to key interactions, yet our basic knowledge of the chemical language remains fragmentary. Continued improvements in plant genome assembly and metabolomics are enabling large-scale advances in the discovery of specialized metabolic pathways as a means of regulating root-biotic interactions. Metabolomics, transcript coexpression analyses, forward genetic studies, gene synthesis and heterologous expression assays drive efficient pathway discoveries. Functional genetic variants identified through genome wide analyses, targeted CRISPR/Cas9 approaches, and both native and non-native overexpression studies critically inform novel strategies for bioengineering metabolic pathways to improve plant traits.
Collapse
Affiliation(s)
- Yezhang Ding
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Trent R Northen
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Ahmed Khalil
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, USA
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Hu L, Zhang J, Pan X, Yan H, You ZH. HiSCF: leveraging higher-order structures for clustering analysis in biological networks. Bioinformatics 2021; 37:542-550. [PMID: 32931549 DOI: 10.1093/bioinformatics/btaa775] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/12/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Clustering analysis in a biological network is to group biological entities into functional modules, thus providing valuable insight into the understanding of complex biological systems. Existing clustering techniques make use of lower-order connectivity patterns at the level of individual biological entities and their connections, but few of them can take into account of higher-order connectivity patterns at the level of small network motifs. RESULTS Here, we present a novel clustering framework, namely HiSCF, to identify functional modules based on the higher-order structure information available in a biological network. Taking advantage of higher-order Markov stochastic process, HiSCF is able to perform the clustering analysis by exploiting a variety of network motifs. When compared with several state-of-the-art clustering models, HiSCF yields the best performance for two practical clustering applications, i.e. protein complex identification and gene co-expression module detection, in terms of accuracy. The promising performance of HiSCF demonstrates that the consideration of higher-order network motifs gains new insight into the analysis of biological networks, such as the identification of overlapping protein complexes and the inference of new signaling pathways, and also reveals the rich higher-order organizational structures presented in biological networks. AVAILABILITY AND IMPLEMENTATION HiSCF is available at https://github.com/allenv5/HiSCF. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lun Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China.,School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Zhang
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, China
| | - Xiangyu Pan
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, China
| | - Hong Yan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China
| |
Collapse
|
10
|
Serra Serra N, Shanmuganathan R, Becker C. Allelopathy in rice: a story of momilactones, kin recognition, and weed management. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4022-4037. [PMID: 33647935 DOI: 10.1093/jxb/erab084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
In the struggle to secure nutrient access and to outperform competitors, some plant species have evolved a biochemical arsenal with which they inhibit the growth or development of neighbouring plants. This process, known as allelopathy, exists in many of today's major crops, including rice. Rice synthesizes momilactones, diterpenoids that are released into the rhizosphere and inhibit the growth of numerous plant species. While the allelopathic potential of rice was recognized decades ago, many questions remain unresolved regarding the biosynthesis, exudation, and biological activity of momilactones. Here, we review current knowledge on momilactones, their role in allelopathy, and their potential to serve as a basis for sustainable weed management. We emphasize the gaps in our current understanding of when and how momilactones are produced and of how they act in plant cells, and outline what we consider the next steps in momilactone and rice allelopathy research.
Collapse
Affiliation(s)
- Núria Serra Serra
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Reshi Shanmuganathan
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- Genetics, LMU Biocenter, Ludwig-Maximilians University, D-82152 Martinsried, Germany
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- Genetics, LMU Biocenter, Ludwig-Maximilians University, D-82152 Martinsried, Germany
| |
Collapse
|
11
|
Huo Y, Zhang B, Chen L, Zhang J, Zhang X, Zhu C. Isolation and Functional Characterization of the Promoters of Miltiradiene Synthase Genes, TwTPS27a and TwTPS27b, and Interaction Analysis with the Transcription Factor TwTGA1 from Tripterygium wilfordii. PLANTS 2021; 10:plants10020418. [PMID: 33672407 PMCID: PMC7926782 DOI: 10.3390/plants10020418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022]
Abstract
Miltiradiene synthase (MS) genes, TwTPS27a and TwTPS27b, are the key diterpene synthase genes in the biosynthesis of triptolide, which is an important medicinally active diterpenoid in Tripterygium wilfordii. However, the mechanism underlying the regulation of key genes TwTPS27a/b in triptolide biosynthesis remains unclear. In this study, the promoters of TwTPS27a (1496 bp) and TwTPS27b (1862 bp) were isolated and analyzed. Some hormone-/stress-responsive elements and transcription factor (TF) binding sites were predicted in both promoters, which might be responsible for the regulation mechanism of TwTPS27a/b. The β-glucuronidase (GUS) activity analysis in promoter deletion assays under normal and methyl jasmonate (MeJA) conditions showed that the sequence of −921 to −391 bp is the potential core region of the TwTPS27b promoter. And the TGACG-motif, a MeJA-responsive element found in this core region, might be responsible for MeJA-mediated stress induction of GUS activity. Moreover, the TGACG-motif is also known as the TGA TF-binding site. Yeast one-hybrid and GUS transactivation assays confirmed the interaction between the TwTPS27a/b promoters and the TwTGA1 TF (a MeJA-inducible TGA TF upregulating triptolide biosynthesis in T. wilfordii), indicating that TwTPS27a/b are two target genes regulated by TwTGA1. In conclusion, our results provide important information for elucidating the regulatory mechanism of MS genes, TwTPS27a and TwTPS27b, as two target genes of TwTGA1, in jasmonic acid (JA)-inducible triptolide biosynthesis.
Collapse
Affiliation(s)
- Yanbo Huo
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
| | - Bin Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
| | - Ling Chen
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
| | - Jing Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
- Engineering and Research Center of Biological Pesticide of Shaanxi Province, Yangling 712100, China
| | - Xing Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
- Engineering and Research Center of Biological Pesticide of Shaanxi Province, Yangling 712100, China
- Correspondence: (X.Z.); (C.Z.)
| | - Chuanshu Zhu
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.H.); (B.Z.); (L.C.); (J.Z.)
- Engineering and Research Center of Biological Pesticide of Shaanxi Province, Yangling 712100, China
- Correspondence: (X.Z.); (C.Z.)
| |
Collapse
|
12
|
Marzec M, Situmorang A, Brewer PB, Brąszewska A. Diverse Roles of MAX1 Homologues in Rice. Genes (Basel) 2020; 11:E1348. [PMID: 33202900 PMCID: PMC7709044 DOI: 10.3390/genes11111348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cytochrome P450 enzymes encoded by MORE AXILLARY GROWTH1 (MAX1)-like genes produce most of the structural diversity of strigolactones during the final steps of strigolactone biosynthesis. The diverse copies of MAX1 in Oryza sativa provide a resource to investigate why plants produce such a wide range of strigolactones. Here we performed in silico analyses of transcription factors and microRNAs that may regulate each rice MAX1, and compared the results with available data about MAX1 expression profiles and genes co-expressed with MAX1 genes. Data suggest that distinct mechanisms regulate the expression of each MAX1. Moreover, there may be novel functions for MAX1 homologues, such as the regulation of flower development or responses to heavy metals. In addition, individual MAX1s could be involved in specific functions, such as the regulation of seed development or wax synthesis in rice. Our analysis reveals potential new avenues of strigolactone research that may otherwise not be obvious.
Collapse
Affiliation(s)
- Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland;
| | - Apriadi Situmorang
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (A.S.); (P.B.B.)
| | - Philip B. Brewer
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (A.S.); (P.B.B.)
| | - Agnieszka Brąszewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland;
| |
Collapse
|
13
|
Pabuayon ICM, Kitazumi A, Gregorio GB, Singh RK, de los Reyes BG. Contributions of Adaptive Plant Architecture to Transgressive Salinity Tolerance in Recombinant Inbred Lines of Rice: Molecular Mechanisms Based on Transcriptional Networks. Front Genet 2020; 11:594569. [PMID: 33193743 PMCID: PMC7644915 DOI: 10.3389/fgene.2020.594569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022] Open
Abstract
Genetic novelties are important nucleators of adaptive speciation. Transgressive segregation is a major mechanism that creates genetic novelties with morphological and developmental attributes that confer adaptive advantages in certain environments. This study examined the morpho-developmental and physiological profiles of recombinant inbred lines (RILs) from the salt-sensitive IR29 and salt-tolerant Pokkali rice, representing the total range of salt tolerance including the outliers at both ends of the spectrum. Morpho-developmental and physiological profiles were integrated with a hypothesis-driven interrogation of mRNA and miRNA transcriptomes to uncover the critical genetic networks that have been rewired for novel adaptive architecture. The transgressive super-tolerant FL510 had a characteristic small tiller angle and wider, more erect, sturdier, and darker green leaves. This unique morphology resulted in lower transpiration rate, which also conferred a special ability to retain water more efficiently for osmotic avoidance. The unique ability for water retention conferred by such adaptive morphology appeared to enhance the efficacy of defenses mediated by Na+ exclusion mechanism (SalTol-effects) inherited from Pokkali. The super-tolerant FL510 and super-sensitive FL499 had the smallest proportions of differentially expressed genes with little overlaps. Genes that were steadily upregulated in FL510 comprised a putative cytokinin-regulated genetic network that appeared to maintain robust growth under salt stress through well-orchestrated cell wall biogenesis and cell expansion, likely through major regulatory (OsRR23, OsHK5) and biosynthetic (OsIPT9) genes in the cytokinin signaling pathway. Meanwhile, a constitutively expressed cluster in FL510 prominently featured two transcription factors (OsIBH1, TAC3) that control tiller angle and growth habit through the brassinosteroid signaling pathway. Both the putative cytokinin-mediated and brassinosteroid-mediated clusters appeared to function as highly coordinated network synergies in FL510. In contrast, both networks appeared to be sub-optimal and inferior in the other RILs and parents as they were disjointed and highly fragmented. Transgressively expressed miRNAs (miR169, miR397, miR827) were also identified as prominent signatures of FL510, with functional implications to mechanisms that support robust growth, homeostasis, and osmotic stress avoidance. Results of this study demonstrate how genetic recombination creates novel morphology that complements inducible defenses hence transgressive adaptive phenotypes.
Collapse
Affiliation(s)
| | - Ai Kitazumi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | | | | | | |
Collapse
|
14
|
Meraj TA, Fu J, Raza MA, Zhu C, Shen Q, Xu D, Wang Q. Transcriptional Factors Regulate Plant Stress Responses through Mediating Secondary Metabolism. Genes (Basel) 2020; 11:genes11040346. [PMID: 32218164 PMCID: PMC7230336 DOI: 10.3390/genes11040346] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/02/2022] Open
Abstract
Plants are adapted to sense numerous stress stimuli and mount efficient defense responses by directing intricate signaling pathways. They respond to undesirable circumstances to produce stress-inducible phytochemicals that play indispensable roles in plant immunity. Extensive studies have been made to elucidate the underpinnings of defensive molecular mechanisms in various plant species. Transcriptional factors (TFs) are involved in plant defense regulations through acting as mediators by perceiving stress signals and directing downstream defense gene expression. The cross interactions of TFs and stress signaling crosstalk are decisive in determining accumulation of defense metabolites. Here, we collected the major TFs that are efficient in stress responses through regulating secondary metabolism for the direct cessation of stress factors. We focused on six major TF families including AP2/ERF, WRKY, bHLH, bZIP, MYB, and NAC. This review is the compilation of studies where researches were conducted to explore the roles of TFs in stress responses and the contribution of secondary metabolites in combating stress influences. Modulation of these TFs at transcriptional and post-transcriptional levels can facilitate molecular breeding and genetic improvement of crop plants regarding stress sensitivity and response through production of defensive compounds.
Collapse
Affiliation(s)
- Tehseen Ahmad Meraj
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Jingye Fu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China;
| | - Chenying Zhu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Dongbei Xu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China; (T.A.M.); (J.F.); (C.Z.); (Q.S.); (D.X.)
- Correspondence:
| |
Collapse
|
15
|
Wang W, Li Y, Dang P, Zhao S, Lai D, Zhou L. Rice Secondary Metabolites: Structures, Roles, Biosynthesis, and Metabolic Regulation. Molecules 2018; 23:E3098. [PMID: 30486426 PMCID: PMC6320963 DOI: 10.3390/molecules23123098] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 02/05/2023] Open
Abstract
Rice (Oryza sativa L.) is an important food crop providing energy and nutrients for more than half of the world population. It produces vast amounts of secondary metabolites. At least 276 secondary metabolites from rice have been identified in the past 50 years. They mainly include phenolic acids, flavonoids, terpenoids, steroids, alkaloids, and their derivatives. These metabolites exhibit many physiological functions, such as regulatory effects on rice growth and development, disease-resistance promotion, anti-insect activity, and allelopathic effects, as well as various kinds of biological activities such as antimicrobial, antioxidant, cytotoxic, and anti-inflammatory properties. This review focuses on our knowledge of the structures, biological functions and activities, biosynthesis, and metabolic regulation of rice secondary metabolites. Some considerations about cheminformatics, metabolomics, genetic transformation, production, and applications related to the secondary metabolites from rice are also discussed.
Collapse
Affiliation(s)
- Weixuan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yuying Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Pengqin Dang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Siji Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|