1
|
Guo L, Qi Y, Mu Y, Zhou J, Lu W, Tian Z. Potato StLecRK-IV.1 negatively regulates late blight resistance by affecting the stability of a positive regulator StTET8. HORTICULTURE RESEARCH 2022; 9:uhac010. [PMID: 35147183 PMCID: PMC9016858 DOI: 10.1093/hr/uhac010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/12/2021] [Indexed: 05/13/2023]
Abstract
Plant receptor-like kinases (RLKs) regulate many processes in plants. Many RLKs perform significant roles in plant immunity. Lectin receptor-like kinases (LecRLKs) are a large family of RLKs. However, the function of most of LecRLKs is poorly understood. In this study, we show that a potato LecRLK, StLecRK-IV.1, is involved in plant immunity against Phytophthora infestans. As a negative regulator of immunity, StLecRK-IV.1 is down-regulated by P. infestans and activated by abscisic acid (ABA). The transient expression of StLecRK-IV.1 in Nicotiana benthamiana enhanced P. infestans leaf colonization significantly. In contrast, the disease lesion size caused by P. infestans was reduced in Virus-induced gene silencing (VIGS) of StLecRK-IV.1 orthologue in N. benthamiana, NbLecRK-IV.1, as well as in potato plants with stable RNA interference of StLecRK-IV.1. Tetraspanin-8 (StTET8) was identified to be interacting with StLecRK-IV.1 using a membrane yeast-2-hybrid system, which was further verified by co-immunoprecipitation, a luciferase complementation assay, and a bimolecular fluorescence complementary (BiFC) test. StTET8 is a positive immune regulator that restrains P. infestans infection. The co-expression of StLecRK-IV.1 with StTET8 antagonized the positive roles of StTET8 against P. infestans. Moreover, the co-expression of StTET8 with StLecRK-IV.1 affected the stability of StTET8, which was confirmed by a Western blot assay and confocal assay. Taken together, our work firstly revealed that a potato L-type Lectin RLK, StLecRK-IV.1, negatively regulates plant immunity by targeting a positive regulator, StTET8, through affecting its stability.
Collapse
Affiliation(s)
- Lei Guo
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
| | - Yetong Qi
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
- Potato Engineering and Technology Research Center
of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Mu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
- Potato Engineering and Technology Research Center
of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhou
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
- Potato Engineering and Technology Research Center
of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhe Lu
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, China
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
- Potato Engineering and Technology Research Center
of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory. Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Proteomic and Phosphoryproteomic Investigations Reveal that Autophagy-Related Protein 1, a Protein Kinase for Autophagy Initiation, Synchronously Deploys Phosphoregulation on the Ubiquitin-Like Conjugation System in the Mycopathogen Beauveria bassiana. mSystems 2022; 7:e0146321. [PMID: 35133188 PMCID: PMC8823290 DOI: 10.1128/msystems.01463-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a conserved intracellular degradation mechanism in eukaryotes and is initiated by the protein kinase autophagy-related protein 1 (Atg1). However, except for the autophosphorylation activity of Atg1, the target proteins phosphorylated by Atg1 are largely unknown in filamentous fungi. In Beauveria bassiana (a filamentous insect-pathogenic fungus), Atg1 is indispensable for autophagy and is associated with fungal development. Comparative omics-based analyses revealed that B. bassiana Atg1 (BbAtg1) has key influence on the proteome and phosphoproteome during conidiogenesis. In terms of its physiological functions, the BbAtg1-mediated phosphoproteome is primarily associated with metabolism, signal transduction, cell cycle, and autophagy. At the proteomic level, BbAtg1 mainly regulates genes involved in protein synthesis, protein fate, and protein with binding function. Furthermore, integrative analyses of phosphoproteomic and proteomic data led to the identification of several potential targets regulated by BbAtg1 phosphorylation activity. Notably, we demonstrated that BbAtg1 phosphorylated BbAtg3, an essential component of the ubiquitin-like conjugation system in autophagic progress. Our findings indicate that in addition to being a critical component of the autophagy initiation, Atg1 orchestrates autophagosome elongation via its phosphorylation activity. The data from our study will facilitate future studies on the noncanonical targets of Atg1 and help decipher the Atg1-mediated phosphorylation networks. IMPORTANCE Autophagy-related protein 1 (Atg1) is a serine/threonine protein kinase for autophagy initiation. In contrast to the unicellular yeast, the target proteins phosphorylated by Atg1 are largely unknown in filamentous fungi. In this study, the entomopathogenic fungus Beauveria bassiana was used as a representative of filamentous fungi due to its importance in the applied and fundamental research. We revealed that Atg1 mediates the comprehensive proteome and phosphoproteome, which differ from those revealed in yeast. Further investigation revealed that Atg1 directly phosphorylates the E2-like enzyme Atg3 of the ubiquitin-like conjugation system (ULCS), and the phosphorylation of Atg3 is indispensable for ULCS functionality. Interestingly, the phosphorylation site of Atg3 is conserved among a set of insect- and plant-pathogenic fungi but not in human-pathogenic fungi. This study reveals new regulatory mechanisms of autophagy and provides new insights into the evolutionary diversity of the Atg1 kinase signaling pathways among different pathogenic fungi.
Collapse
|
3
|
Subba P, Prasad TSK. Plant Phosphoproteomics: Known Knowns, Known Unknowns, and Unknown Unknowns of an Emerging Systems Science Frontier. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:750-769. [PMID: 34882020 DOI: 10.1089/omi.2021.0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant systems science research depends on the dynamic functional maps of the biological substrates of plant phenotypes and host/environment interactions in diverse ecologies. In this context, high-resolution mass spectrometry platforms offer comprehensive insights into the molecular pathways regulated by protein phosphorylation. Reversible protein phosphorylation is a ubiquitous reaction in signal transduction mechanisms in biological systems. In contrast to human and animal biology research, a plethora of experimental options for functional mapping and regulation of plant biology are, however, not currently available. Plant phosphoproteomics is an emerging field of research that aims at addressing this gap in systems science and plant omics, and thus has a large scope to empower fundamental discoveries. To date, large-scale data-intensive identification of phosphorylation events in plants remained technically challenging. In this expert review, we present a critical analysis and overview of phosphoproteomic studies performed in the model plant Arabidopsis thaliana. We discuss the technical strategies used for the enrichment of phosphopeptides and methods used for their quantitative assessment. Various types of mass spectrometry data acquisition and fragmentation methods are also discussed. The insights gathered here can allow plant biology and systems science researchers to design high-throughput function-oriented experimental workflows that elucidate the regulatory signaling mechanisms impacting plant physiology and plant diseases.
Collapse
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
4
|
Xiao W, Hu S, Zou X, Cai R, Liao R, Lin X, Yao R, Guo X. Lectin receptor-like kinase LecRK-VIII.2 is a missing link in MAPK signaling-mediated yield control. PLANT PHYSIOLOGY 2021; 187:303-320. [PMID: 34618128 PMCID: PMC8418426 DOI: 10.1093/plphys/kiab241] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/01/2021] [Indexed: 05/13/2023]
Abstract
The energy allocation for vegetative and reproductive growth is regulated by developmental signals and environmental cues, which subsequently affects seed output. However, the molecular mechanism underlying how plants coordinate yield-related traits to control yield in changing source-sink relationships remains largely unknown. Here, we discovered the lectin receptor-like kinase LecRK-VIII.2 as a specific receptor-like kinase that coordinates silique number, seed size, and seed number to determine seed yield in Arabidopsis (Arabidopsis thaliana). The lecrk-VIII.2 mutants develop smaller seeds, but more siliques and seeds, leading to increased yield. In contrast, the plants overexpressing LecRK-VIII.2 form bigger seeds, but less siliques and seeds, which results in similar yield to that of wild-type plants. Interestingly, LecRK-VIII.2 promotes the growth of the rosette, root, and stem by coordinating the source-sink relationship. Additionally, LecRK-VIII.2 positively regulates cell expansion and proliferation in the seed coat, and maternally controls seed size. The genetic and biochemical analyses demonstrated that LecRK-VIII.2 acts upstream of the mitogen-activated protein kinase (MAPK) gene MPK6 to regulate silique number, seed size, and seed number. Collectively, these findings uncover LecRK-VIII.2 as an upstream component of the MAPK signaling pathway to control yield-related traits and suggest its potential for crop improvement aimed at developing plants with stable yield, a robust root system, and improved lodging resistance.
Collapse
Affiliation(s)
- Wenjun Xiao
- College of Biology, Hunan University, Changsha 410082, China
| | - Shuai Hu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha 410082, China
| | - Ruqiong Cai
- College of Biology, Hunan University, Changsha 410082, China
| | - Rui Liao
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxia Lin
- College of Biology, Hunan University, Changsha 410082, China
| | - Ruifeng Yao
- College of Biology, Hunan University, Changsha 410082, China
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Hao N, Zou X, Lin X, Cai R, Xiao W, Tong T, Yin H, Sun A, Guo X. LecRK-Ⅷ.2 mediates the cross-talk between sugar and brassinosteroid during hypocotyl elongation in Arabidopsis. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
6
|
Cruz ER, Nguyen H, Nguyen T, Wallace IS. Functional analysis tools for post-translational modification: a post-translational modification database for analysis of proteins and metabolic pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1003-1013. [PMID: 31034103 DOI: 10.1111/tpj.14372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 05/23/2023]
Abstract
Post-translational modifications (PTMs) are critical regulators of protein function, and nearly 200 different types of PTM have been identified. Advances in high-resolution mass spectrometry have led to the identification of an unprecedented number of PTM sites in numerous organisms, potentially facilitating a more complete understanding of how PTMs regulate cellular behavior. While databases have been created to house the resulting data, most of these resources focus on individual types of PTM, do not consider quantitative PTM analyses or do not provide tools for the visualization and analysis of PTM data. Here, we describe the Functional Analysis Tools for Post-Translational Modifications (FAT-PTM) database (https://bioinformatics.cse.unr.edu/fat-ptm/), which currently supports eight different types of PTM and over 49 000 PTM sites identified in large-scale proteomic surveys of the model organism Arabidopsis thaliana. The FAT-PTM database currently supports tools to visualize protein-centric PTM networks, quantitative phosphorylation site data from over 10 different quantitative phosphoproteomic studies, PTM information displayed in protein-centric metabolic pathways and groups of proteins that are co-modified by multiple PTMs. Overall, the FAT-PTM database provides users with a robust platform to share and visualize experimentally supported PTM data, develop hypotheses related to target proteins or identify emergent patterns in PTM data for signaling and metabolic pathways.
Collapse
Affiliation(s)
- Edward R Cruz
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Hung Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Tin Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, 89557, USA
- Department of Chemistry, University of Nevada, Reno, Reno, NV, 89557, USA
| |
Collapse
|
7
|
Quantitative Phosphoproteomic and Physiological Analyses Provide Insights into the Formation of the Variegated Leaf in Catalpa fargesii. Int J Mol Sci 2019; 20:ijms20081895. [PMID: 30999580 PMCID: PMC6514904 DOI: 10.3390/ijms20081895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022] Open
Abstract
Variegated plants are valuable materials for investigating leaf color regulated mechanisms. To unveil the role of posttranslational modification in the variegated phenotype, we conducted global quantitative phosphoproteomic analysis on different leaf color sectors of Maiyuanjinqiu and the corresponding of Catalpa fargesii using Ti4+-IMAC phosphopeptide enrichment. A total of 3778 phosphorylated sites assigned to 1646 phosphoproteins were identified, and 3221 in 1434 proteins were quantified. Differential phosphoproteins (above 1.5 or below 1/1.5) in various leaf color sectors were selected for functional enrichment analyses. Gene ontology (GO) enrichment revealed that processes of photosynthesis, regulation of the generation of precursor metabolites, response to stress, homeostasis, amino acid metabolism, transport–related processes, and most of the energy metabolisms might contribute to leaf color. KEGG pathway enrichment analysis was performed based on differential phosphoproteins (DPs) in different organelles. The result showed that most enriched pathways were located in the chloroplasts and cytosol. The phosphorylation levels of glycometabolism enzymes might greatly affect leaf variegation. Measurements of fluorescence parameters and enzyme activities confirmed that protein phosphorylation could affect plant physiology by regulating enzyme activity. These results provide new clues for further study the formation mechanisms of naturally variegated phenotype.
Collapse
|