1
|
Fuchs H, Plitta-Michalak BP, Małecka A, Ciszewska L, Sikorski Ł, Staszak AM, Michalak M, Ratajczak E. The chances in the redox priming of nondormant recalcitrant seeds by spermidine. TREE PHYSIOLOGY 2023:tpad036. [PMID: 36943301 DOI: 10.1093/treephys/tpad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The problems posed by seed sensitivity to desiccation and aging have motivated the development of various techniques for mitigating their detrimental effects. The redox priming of seeds in antioxidant solution to improve their postharvest performance is one of the approaches. Spermidine (Spd) was tested as an invigorating solution on nondormant recalcitrant (desiccation sensitive) seeds of the silver maple (Acer saccharinum L.). The treatment resulted in an 8-10% increase in germination capacity in seeds subjected to mild and severe desiccation, while in aged seeds stored for six months, no significant change was observed. The cellular redox milieu, genetic stability, mitochondrial structure and function were investigated to provide information about the cellular targets of Spd activity. Spd improved the antioxidative capacity, especially the activity of catalase, and cellular membrane stability, protected genome integrity from oxidative damage and increased the efficiency of mitochondria. However, it also elicited a hydrogen peroxide burst. Therefore, it seems that redox priming in nondormant seeds that are highly sensitive to desiccation, although positively affected desiccated seed performance, may not be a simple solution to reinvigorate stored seeds with a low-efficiency antioxidant system.
Collapse
Affiliation(s)
- Hanna Fuchs
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Beata P Plitta-Michalak
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-719 Olsztyn, Poland
| | - Arleta Małecka
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
- Department of Epidemiology and Cancer Prevention, Greater Poland Cancer Centre, Garbary 15 street, 61-866 Poznan, Poland
| | - Liliana Ciszewska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Łukasz Sikorski
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Aleksandra M Staszak
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Marcin Michalak
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology,University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103, 10-719 Olsztyn, Poland
| | - Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
2
|
Identification of DNA Methylation Changes in European Beech Seeds during Desiccation and Storage. Int J Mol Sci 2023; 24:ijms24043557. [PMID: 36834975 PMCID: PMC9968092 DOI: 10.3390/ijms24043557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Ageing and deterioration of seeds is a major problem for the maintenance of seed quality and viability during long-term storage. Prediction of early stages of seed deterioration in order to point out the plantlets' regeneration time is a major challenge of successful storage. In preserved seeds, damages accumulate within cells at the rate mainly related to their moisture content and temperature of storage. Current research reveals global alterations in DNA methylation in lipid-rich intermediate seeds during desiccation and storage at various regimes covering nonoptimal and optimal conditions. We show for the first time that monitoring of 5-methylcytosine (m5C) level in seeds can be used as a truly universal viability marker regardless of postharvest category of seeds and their composition. For seeds stored up to three years, in varied conditions, moisture content, temperature, and time of storage had significant influence on seedling emergence and DNA methylation (p < 0.05). Similarities among lipid-rich intermediate and orthodox seeds regarding different reactions of embryonic axes and cotyledons to desiccation are newly revealed. Along with previous studies on seeds dramatically different in desiccation tolerance (recalcitrant vs. orthodox), results regarding lipid-rich seeds positioned in-between (intermediate) prove that maintaining global DNA methylation status is crucial for maintaining seed viability.
Collapse
|
3
|
Nadarajan J, Walters C, Pritchard HW, Ballesteros D, Colville L. Seed Longevity-The Evolution of Knowledge and a Conceptual Framework. PLANTS (BASEL, SWITZERLAND) 2023; 12:471. [PMID: 36771556 PMCID: PMC9919896 DOI: 10.3390/plants12030471] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The lifespan or longevity of a seed is the time period over which it can remain viable. Seed longevity is a complex trait and varies greatly between species and even seed lots of the same species. Our scientific understanding of seed longevity has advanced from anecdotal 'Thumb Rules,' to empirically based models, biophysical explanations for why those models sometimes work or fail, and to the profound realisation that seeds are the model of the underexplored realm of biology when water is so limited that the cytoplasm solidifies. The environmental variables of moisture and temperature are essential factors that define survival or death, as well as the timescale to measure lifespan. There is an increasing understanding of how these factors induce cytoplasmic solidification and affect glassy properties. Cytoplasmic solidification slows down, but does not stop, the chemical reactions involved in ageing. Continued degradation of proteins, lipids and nucleic acids damage cell constituents and reduce the seed's metabolic capacity, eventually impairing the ability to germinate. This review captures the evolution of knowledge on seed longevity over the past five decades in relation to seed ageing mechanisms, technology development, including tools to predict seed storage behaviour and non-invasive techniques for seed longevity assessment. It is concluded that seed storage biology is a complex science covering seed physiology, biophysics, biochemistry and multi-omic technologies, and simultaneous knowledge advancement in these areas is necessary to improve seed storage efficacy for crops and wild species biodiversity conservation.
Collapse
Affiliation(s)
- Jayanthi Nadarajan
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Palmerston North 4410, New Zealand
| | - Christina Walters
- USDA—Agricultural Research Service, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA
| | - Hugh W. Pritchard
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath RH17 6TN, UK
- Chinese Academy of Sciences, Kunming Institute of Botany, Kunming 650201, China
| | - Daniel Ballesteros
- Faculty of Farmacy, Department of Botany and Geology, University of Valencia, Av. Vicent Estelles s/n, 46100 Valencia, Spain
| | - Louise Colville
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath RH17 6TN, UK
| |
Collapse
|
4
|
Trusiak M, Plitta-Michalak BP, Michalak M. Choosing the Right Path for the Successful Storage of Seeds. PLANTS (BASEL, SWITZERLAND) 2022; 12:72. [PMID: 36616200 PMCID: PMC9823941 DOI: 10.3390/plants12010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Seeds are the most commonly used source of storage material to preserve the genetic diversity of plants. However, prior to the deposition of seeds in gene banks, several questions need to be addressed. Here, we illustrate the scheme that can be used to ensure that the most optimal conditions are identified to enable the long-term storage of seeds. The main questions that need to be answered pertain to the production of viable seeds by plants, the availability of proper protocols for dormancy alleviation and germination, seed tolerance to desiccation and cold storage at -20 °C. Finally, it is very important to fully understand the capability or lack thereof for seeds or their explants to tolerate cryogenic conditions. The proper storage regimes for orthodox, intermediate and recalcitrant seeds are discussed.
Collapse
Affiliation(s)
- Magdalena Trusiak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 1A, 10-721 Olsztyn, Poland
| | | | - Marcin Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 1A, 10-721 Olsztyn, Poland
| |
Collapse
|
5
|
Dong X, Sun L, Agarwal M, Maker G, Han Y, Yu X, Ren Y. The Effect of Ozone Treatment on Metabolite Profile of Germinating Barley. Foods 2022; 11:foods11091211. [PMID: 35563933 PMCID: PMC9104593 DOI: 10.3390/foods11091211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022] Open
Abstract
Ozone is widely used to control pests in grain and impacts seed germination, a crucial stage in crop establishment which involves metabolic alterations. In this study, dormancy was overcome through after-ripening (AR) in dry barley seed storage of more than 4 weeks; alternatively, a 15-min ozone treatment could break the dormancy of barley immediately after harvest, with accelerated germination efficiency remaining around 96% until 4 weeks. Headspace solid-phase microextraction (HS-SPME) and liquid absorption coupled with gas chromatography mass spectrometry (GC-MS) were utilized for metabolite profiling of 2-, 4- and 7-day germinating seeds. Metabolic changes during barley germination are reflected by time-dependent characteristics. Alcohols, fatty acids, and ketones were major contributors to time-driven changes during germination. In addition, greater fatty acids were released at the early germination stage when subjected to ozone treatment.
Collapse
Affiliation(s)
- Xue Dong
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia; (X.D.); (L.S.); (M.A.); (G.M.); (Y.H.)
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Litao Sun
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia; (X.D.); (L.S.); (M.A.); (G.M.); (Y.H.)
| | - Manjree Agarwal
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia; (X.D.); (L.S.); (M.A.); (G.M.); (Y.H.)
| | - Garth Maker
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia; (X.D.); (L.S.); (M.A.); (G.M.); (Y.H.)
| | - Yitao Han
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia; (X.D.); (L.S.); (M.A.); (G.M.); (Y.H.)
| | - Xiangyang Yu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Correspondence: (X.Y.); (Y.R.); Tel.: +86-25-8439-1299 (X.Y.); +618-9360-1397 (Y.R.)
| | - Yonglin Ren
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia; (X.D.); (L.S.); (M.A.); (G.M.); (Y.H.)
- Correspondence: (X.Y.); (Y.R.); Tel.: +86-25-8439-1299 (X.Y.); +618-9360-1397 (Y.R.)
| |
Collapse
|
6
|
Gerna D, Ballesteros D, Arc E, Stöggl W, Seal CE, Marami-Zonouz N, Na CS, Kranner I, Roach T. Does oxygen affect ageing mechanisms of Pinus densiflora seeds? A matter of cytoplasmic physical state. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2631-2649. [PMID: 35084458 DOI: 10.1093/jxb/erac024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
During desiccation, the cytoplasm of orthodox seeds solidifies into an intracellular glass with highly restricted diffusion and molecular mobility. Temperature and water content govern seed ageing rates, while oxygen (O2) can promote deteriorative reactions. However, whether the cytoplasmic physical state affects involvement of O2 in seed ageing remains unresolved. We aged Pinus densiflora seeds by controlled deterioration (CD) at 45 °C and distinct relative humidity (RH), resulting in cells with a glassy (11% and 30% RH) or fluid (60% and 80% RH) cytoplasm. Hypoxic conditions (0.4% O2) during CD delayed seed deterioration, lipid peroxidation, and decline of antioxidants (glutathione, α-tocopherol, and γ-tocopherol), but only when the cytoplasm was glassy. In contrast, when the cytoplasm was fluid, seeds deteriorated at the same rate regardless of O2 availability, while being associated with limited lipid peroxidation, detoxification of lipid peroxide products, substantial loss of glutathione, and resumption of glutathione synthesis. Changes in metabolite profiles provided evidence of other O2-independent enzymatic reactions in a fluid cytoplasm, including aldo-keto reductase and glutamate decarboxylase activities. Biochemical profiles of seeds stored under seed bank conditions resembled those obtained after CD regimes that maintained a glassy cytoplasm. Overall, O2 contributed more to seed ageing when the cytoplasm was glassy, rather than fluid.
Collapse
Affiliation(s)
- Davide Gerna
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | | | - Erwann Arc
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Wolfgang Stöggl
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | | | - Nicki Marami-Zonouz
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Chae Sun Na
- Seed Conservation Research Division, Department of Seed Vault, Baekdudaegan National Arboretum, 2160-53 Munsu-ro, Chunyang-myeon, Bonghwa-gun, Gyeongsangbuk-do, Republic of Korea
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Thomas Roach
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|