1
|
Sun JK, Liu MC, Chen JX, Qu B, Gao Y, Geng L, Zheng L, Feng YL. Higher Nitrogen Uptakes Contribute to Growth Advantage of Invasive Solanum rostratum over Two Co-Occurring Natives Under Different Soil Nitrogen Forms and Concentrations. PLANTS (BASEL, SWITZERLAND) 2025; 14:640. [PMID: 40094552 PMCID: PMC11901527 DOI: 10.3390/plants14050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
High nitrogen (N) uptake is one of the main reasons for invasive alien plant invasions. However, little effort has been made to compare the effects of different N forms on N uptake between invasive and native plants, especially those on N form acquisition strategies (preference and plasticity), which influence N uptake, and thus exotic plant invasions. Related studies are particularly few in barren habitats, where the effects of N deposition on invasiveness are considered to be much weaker than in fertile habitats. In this study, we grew Solanum rostratum, a noxious invader in barren habitats, and the native plants Leymus chinensis and Agropyron cristatum in both mono- and mixed cultures under nitrate and ammonium addition treatments, and analyzed the effects of the soil N availability and forms on the growth, N uptake, and N form acquisition strategies for these plants. The invader outperformed the natives in N uptake (in most cases) and growth (always) in both mono- and mixed cultures under all N treatments. N addition increased the N uptake and growth of the invader. The advantages of the invader over the natives were higher under ammonium relative to nitrate addition. The growth advantage of the invader was associated with its higher N uptake and higher N-use efficiency. Higher plasticity in N form uptake may contribute to the higher N uptake for the invader when grown in mixed cultures. Our findings indicate that N deposition, particularly in the form of ammonium, may accelerate exotic plant invasions in barren habitats.
Collapse
Affiliation(s)
- Jian-Kun Sun
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China;
| | - Ming-Chao Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (M.-C.L.); (J.-X.C.); (B.Q.)
| | - Ji-Xin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (M.-C.L.); (J.-X.C.); (B.Q.)
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (M.-C.L.); (J.-X.C.); (B.Q.)
| | - Ying Gao
- Yixian Water Conservancy Affairs Service Center, Jinzhou 121100, China; (Y.G.); (L.G.)
| | - Lin Geng
- Yixian Water Conservancy Affairs Service Center, Jinzhou 121100, China; (Y.G.); (L.G.)
| | - Li Zheng
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China;
| | - Yu-Long Feng
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China;
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (M.-C.L.); (J.-X.C.); (B.Q.)
| |
Collapse
|
2
|
Zhang L, Wang X, Zu Y, He Y, Li Z, Li Y. Effects of UV-B Radiation Exposure on Transgenerational Plasticity in Grain Morphology and Proanthocyanidin Content in Yuanyang Red Rice. Int J Mol Sci 2024; 25:4766. [PMID: 38731985 PMCID: PMC11084601 DOI: 10.3390/ijms25094766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The effect of UV-B radiation exposure on transgenerational plasticity, the phenomenon whereby the parental environment influences both the parent's and the offspring's phenotype, is poorly understood. To investigate the impact of exposing successive generations of rice plants to UV-B radiation on seed morphology and proanthocyanidin content, the local traditional rice variety 'Baijiaolaojing' was planted on terraces in Yuanyang county and subjected to enhanced UV-B radiation treatments. The radiation intensity that caused the maximum phenotypic plasticity (7.5 kJ·m-2) was selected for further study, and the rice crops were cultivated for four successive generations. The results show that in the same generation, enhanced UV-B radiation resulted in significant decreases in grain length, grain width, spike weight, and thousand-grain weight, as well as significant increases in empty grain percentage and proanthocyanidin content, compared with crops grown under natural light conditions. Proanthocyanidin content increased as the number of generations of rice exposed to radiation increased, but in generation G3, it decreased, along with the empty grain ratio. At the same time, biomass, tiller number, and thousand-grain weight increased, and rice growth returned to control levels. When the offspring's radiation memory and growth environment did not match, rice growth was negatively affected, and seed proanthocyanidin content was increased to maintain seed activity. The correlation analysis results show that phenylalanine ammonialyase (PAL), cinnamate-4-hydroxylase (C4H), dihydroflavonol 4-reductase (DFR), and 4-coumarate:CoA ligase (4CL) enzyme activity positively influenced proanthocyanidin content. Overall, UV-B radiation affected transgenerational plasticity in seed morphology and proanthocyanidin content, showing that rice was able to adapt to this stressor if previous generations had been continuously exposed to treatment.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Xiupin Wang
- College of Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Khan N, Ullah R, Okla MK, Abdel-Maksoud MA, Saleh IA, Abu-Harirah HA, AlRamadneh TN, AbdElgawad H. Climate and soil factors co-derive the functional traits variations in naturalized downy thorn apple ( Datura innoxia Mill.) along the altitudinal gradient in the semi-arid environment. Heliyon 2024; 10:e27811. [PMID: 38524627 PMCID: PMC10957434 DOI: 10.1016/j.heliyon.2024.e27811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Plant functional traits are consistently linked with certain ecological factors (i.e., abiotic and biotic), determining which components of a plant species pool are assembled into local communities. In this sense, non-native naturalized plants show more plasticity of morphological traits by adopting new habitat (an ecological niche) of the invaded habitats. This study focuses on the biomass allocation pattern and consistent traits-environment linkages of a naturalized Datura innoxia plant population along the elevation gradient in NW, Pakistan. We sampled 120 plots of the downy thorn apple distributed in 12 vegetation stands with 18 morphological and functional biomass traits during the flowering season and were analyzed along the three elevation zones having altitude ranges from 634.85 m to 1405.3 m from sear level designated as Group I to III identified by Ward's agglomerative clustering strategy (WACS). Our results show that many morphological traits and biomass allocation in different parts varied significantly (p < 0.05) in the pair-wise comparisons along the elevation. Likewise, all plant traits decreased from lower (drought stress) to high elevation zones (moist zones), suggesting progressive adaptation of Datura innoxia with the natural vegetation in NW Pakistan. Similarly, the soil variable also corresponds with the trait's variation e.g., significant variations (P < 0.05) of soil organic matter, organic carbon, Nitrogen and Phosphorus was recorded. The trait-environment linkages were exposed by redundancy analysis (RDA) that was co-drive by topographic (elevation, r = -0.4897), edaphic (sand, r = -0.4565 and silt, r = 0.5855) and climatic factors. Nevertheless, the influences of climatic factors were stronger than soil variables that were strongly linked with elevation gradient. The study concludes that D. innoxia has adopted the prevailing environmental and climatic conditions, and further investigation is required to evaluate the effects of these factors on their phytochemical and medicinal value.
Collapse
Affiliation(s)
- Nasrullah Khan
- Department of Botany, University of Malakand, Chakdara Dir Lower, P.O. Box 18800, Khyber Pakhtunkhwa, Pakistan
| | - Rafi Ullah
- Department of Botany, University of Malakand, Chakdara Dir Lower, P.O. Box 18800, Khyber Pakhtunkhwa, Pakistan
- Department of Botany, Dr. Khan Shaheed Govt. Degree College Kabal Swat, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad K. Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa A. Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Hashem A. Abu-Harirah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Tareq Nayef AlRamadneh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Xu Y, Guo Y, Bai Y, Liu Y, Wang Y. Soil nutrient limitation and natural enemies promote the establishment of alien species in native communities. Ecol Evol 2024; 14:e10853. [PMID: 38259957 PMCID: PMC10803180 DOI: 10.1002/ece3.10853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
The invasion of alien plant species threatens the composition and diversity of native communities. However, the invasiveness of alien plants and the resilience of native communities are dependent on the interactions between biotic and abiotic factors, such as natural enemies and nutrient availability. In our study, we simulated the invasion of nine invasive plant species into native plant communities using two levels of nutrient availability and suppression of natural enemies. We evaluated the effect of biotic and abiotic factors on the response of alien target species and the resistance of native communities to invasion. The results showed that the presence of enemies (enemy release) increased the biomass proportion of alien plants while decreasing that of native communities in the absence of nutrient addition. Furthermore, we also found that the negative effect of enemy suppression on the evenness of the native community and the root-to-shoot ratio of alien target species was greatest under nutrient addition. Therefore, nutrient-poor and natural enemies might promote the invasive success of alien species in native communities, whereas nutrient addition and enemy suppression can better enhance the resistance of native plant communities to invasion.
Collapse
Affiliation(s)
- Yu‐Han Xu
- College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yu‐Jian Guo
- College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yan‐Feng Bai
- Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Yuan‐Yuan Liu
- College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yong‐Jian Wang
- College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
5
|
Liu X, Man X, Chen M, Zhao C, Liu C, Tong J, Meng F, Shao M, Qu B. Transgenerational plasticity in morphological characteristics and biomass of the invasive plant Xanthium strumarium. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2920. [PMID: 37750229 DOI: 10.1002/eap.2920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
Transgenerational plasticity (TGP) allows a plant to acclimate to external variable environments and is a potential mechanism that explains the range expansion and invasion success of some exotic plants. Most studies explored the traits of TGP associated with the success of exotic plant invasions by comparison studies among exotic, native, invasive, and noninvasive species. However, studies on the TGP of invasive plants in different resource environments are scarce, and the biological mechanisms involved are not well understood. This study aimed to determine the role of TGP in the invasiveness of Xanthium strumarium in northeast China. We measured the plant morphology of aboveground parts and the growth of three generations of the invader under different environmental conditions. The results showed that the intergenerational plasticity of X. strumarium was stronger under stress conditions. We found that the X. strumarium parent generation (F0) grown under water and/or nutrient deficiency conditions transferred the environmental information to their offspring (F1 and F2). The F1 generation grown under high-resource conditions has greater height with larger crown sizes, thicker basal diameters, and higher biomass. Both water and nutrients can affect the intergenerational transmission of plant plasticity, nutrients play a more important role compared with water. The high morphological intergenerational plasticity of X. strumarium under a pressure environment can help it quickly adapt to the new environment and accelerate the rapid expansion of the population in the short term. The root:shoot ratio and reproductive and nutrient distribution of the X. strumarium F0 and F1 generations showed high stability when the growth environment of the F0 generation differed from that of the F1 generation. The stable resource allocation strategy can ensure that the obtained resources are evenly distributed to each organ to maintain the long-term existence of the community. Therefore, the study of intergenerational transmission plasticity is of great significance for understanding the invasion process, mechanism, and prevention of invasive plants.
Collapse
Affiliation(s)
- Xinyue Liu
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Xiaozhen Man
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Meishan Chen
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Changxin Zhao
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Chuang Liu
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Jialin Tong
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Fanqi Meng
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Meini Shao
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Bo Qu
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| |
Collapse
|
6
|
de Souza TAF, de Lucena EO, Nascimento GDS, da Silva LJR. Biochemical characterization and mycorrhizal fungal community of plant species in the Brazilian seasonal dry forest. J Basic Microbiol 2023; 63:1242-1253. [PMID: 37507826 DOI: 10.1002/jobm.202300269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Invasive alien plant species (IAPS) have the ability to change the biochemical properties and the arbuscular mycorrhizal fungal (AMF) community structure in their rhizosphere. Organic acids, microbial activity, and AMF play a key role in the invader's spread and also has interactions with the soil chemical factors. Our aim here was to assess the rhizosphere's biochemical factors, AMF community composition, and soil chemical properties associated with Cryptostegia madagascariensis (IAPS) and Mimosa tenuiflora (endemic plant species) from the Brazilian Seasonal Dry Forest. The highest values of total glomalin (5.87 mg g-1 soil), root colonization (54.5%), oxalic and malic acids (84.21 and 3.01 μmol g-1 , respectively), microbial biomass C (mg kg-1 ), Na+ (0.080 cmolc kg-1 ), Ca2+ (7.04 cmolc kg-1 ), and soil organic carbon (4.59 g kg-1 ) were found in the rhizosphere of C. madagascariensis. We found dissimilarities on AMF community structure considering the studied plant species: (i) Racocetra coralloidea, Dentiscutata heterogama, Dentiscutata cerradensis, Gigaspora decipiens, and AMF's richness were highly correlated with the rhizosphere of M. tenuiflora; and (ii). The rhizosphere of C. madagascariensis was highly correlated with the abundance of Claroideoglomus etunicatum, Rhizoglomus aggregatum, Funneliformis mosseae, and Funneliformis geosporum. The results of our study highlight the importance of considering C. madagascariensis as potential hosts for AMF species from Glomerales, and a potential plant species that increase the bioavailability of exchangeable Na and Ca at semi-arid conditions.
Collapse
Affiliation(s)
- Tancredo Augusto Feitosa de Souza
- Postgraduate Program in Soil Science, Department of Soils and Rural Engineering, Federal University of Paraiba, Areia, Paraiba, Brazil
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Edjane Oliveira de Lucena
- Postgraduate Program in Soil Science, Department of Soils and Rural Engineering, Federal University of Paraiba, Areia, Paraiba, Brazil
| | - Gislaine Dos Santos Nascimento
- Postgraduate Program in Soil and Water Management, Federal Rural University of the Semi-Arid, Mossoró, Rio Grande do Norte, Brazil
| | - Lucas Jónatan Rodrigues da Silva
- Postgraduate Program in Agronomy, Department of Soil and Environment Resources, College of Agronomic Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| |
Collapse
|
7
|
Zhang C, Wang ST, Li JZ, Feng YL. Molecular bases for the stronger plastic response to high nitrate in the invasive plant Xanthium strumarium compared with its native congener. PLANTA 2023; 258:61. [PMID: 37542564 DOI: 10.1007/s00425-023-04220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
MAIN CONCLUSION High expressions of nitrate use and photosynthesis-related transcripts contribute to the stronger plasticity to high nitrate for the invader relative to its native congener, which may be driven by hormones. Strong phenotypic plasticity is often considered as one of the main mechanisms underlying exotic plant invasions. However, few studies have been conducted to investigate the related molecular mechanisms. Here, we determined the differences in the plastic responses to high nitrate between the invasive plant X. strumarium and its native congener, and the molecular bases by transcriptome analysis and quantitative real-time PCR validation. Our results showed that the invader had higher plasticity of growth, nitrogen accumulation and photosynthesis in responses to high nitrate than its native congener. Compared with its congener, more N utilization-related transcripts, including nitrate transporter 1/peptide transporter family 6.2 and nitrate reductase 1, were induced by high nitrate in the root of X. strumarium, improving its N utilization ability. More transcripts coding for photosynthetic antenna proteins were also induced by high nitrate in the shoot of X. strumarium, enhancing its photosynthesis. Hormones may be involved in the regulation of the plastic responses to high nitrate in the two species. Our study contributes to understanding the molecular mechanisms underlying the stronger plasticity of the invader in responses to high nitrate, and the potential function of plant hormones in these processes, providing bases for precise control of invasive plants using modern molecular techniques.
Collapse
Affiliation(s)
- Chang Zhang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Shi-Ting Wang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jian-Zhi Li
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
8
|
Daly EZ, Chabrerie O, Massol F, Facon B, Hess MC, Tasiemski A, Grandjean F, Chauvat M, Viard F, Forey E, Folcher L, Buisson E, Boivin T, Baltora‐Rosset S, Ulmer R, Gibert P, Thiébaut G, Pantel JH, Heger T, Richardson DM, Renault D. A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. OIKOS 2023. [DOI: 10.1111/oik.09645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ella Z. Daly
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Olivier Chabrerie
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Francois Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Benoit Facon
- CBGP, INRAE, CIRAD, IRD, Montpellier Institut Agro, Univ. Montpellier Montpellier France
| | - Manon C.M. Hess
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
- Inst. de Recherche pour la Conservation des zones Humides Méditerranéennes Tour du Valat, Le Sambuc Arles France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Frédéric Grandjean
- Univ. de Poitiers, UMR CNRS 7267 EBI‐Ecologie et Biologie des Interactions, équipe EES Poitiers Cedex 09 France
| | | | | | - Estelle Forey
- Normandie Univ., UNIROUEN, INRAE, USC ECODIV Rouen France
| | - Laurent Folcher
- ANSES – Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Laboratoire de la Santé des Végétaux – Unité de Nématologie Le Rheu France
| | - Elise Buisson
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
| | - Thomas Boivin
- INRAE, UR629 Écologie des Forêts Méditerranéennes, Centre de Recherche Provence‐Alpes‐Côte d'Azur Avignon France
| | | | - Romain Ulmer
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Patricia Gibert
- UMR 5558 CNRS – Univ. Claude Bernard Lyon 1, Biométrie et Biologie Evolutive, Bât. Gregor Mendel Villeurbanne Cedex France
| | - Gabrielle Thiébaut
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Jelena H. Pantel
- Ecological Modelling, Faculty of Biology, Univ. of Duisburg‐Essen Essen Germany
| | - Tina Heger
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Technical Univ. of Munich, Restoration Ecology Freising Germany
| | - David M. Richardson
- Centre for Invasion Biology, Dept. Botany & Zoology, Stellenbosch University Stellenbosch South Africa
- Inst. of Botany, Czech Academy of Sciences Průhonice Czech Republic
| | - David Renault
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
- Inst. Universitaire de France Paris Cedex 05 France
| |
Collapse
|