1
|
Hu H, Yuan X, Saini DK, Yang T, Wu X, Wu R, Liu Z, Jan F, Mir RR, Liu L, Miao J, Liu N, Xu P. A panomics-driven framework for the improvement of major food legume crops: advances, challenges, and future prospects. HORTICULTURE RESEARCH 2025; 12:uhaf091. [PMID: 40352287 PMCID: PMC12064956 DOI: 10.1093/hr/uhaf091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/13/2025] [Indexed: 05/14/2025]
Abstract
Food legume crops, including common bean, faba bean, mungbean, cowpea, chickpea, and pea, have long served as vital sources of energy, protein, and minerals worldwide, both as grains and vegetables. Advancements in high-throughput phenotyping, next-generation sequencing, transcriptomics, proteomics, and metabolomics have significantly expanded genomic resources for food legumes, ushering research into the panomics era. Despite their nutritional and agronomic importance, food legumes still face constraints in yield potential and genetic improvement due to limited genomic resources, complex inheritance patterns, and insufficient exploration of key traits, such as quality and stress resistance. This highlights the need for continued efforts to comprehensively dissect the phenome, genome, and regulome of these crops. This review summarizes recent advances in technological innovations and multi-omics applications in food legumes research and improvement. Given the critical role of germplasm resources and the challenges in applying phenomics to food legumes-such as complex trait architecture and limited standardized methodologies-we first address these foundational areas. We then discuss recent gene discoveries associated with yield stability, seed composition, and stress tolerance and their potential as breeding targets. Considering the growing role of genetic engineering, we provide an update on gene-editing applications in legumes, particularly CRISPR-based approaches for trait enhancement. We advocate for integrating chemical and biochemical signatures of cells ('molecular phenomics') with genetic mapping to accelerate gene discovery. We anticipate that combining panomics approaches with advanced breeding technologies will accelerate genetic gains in food legumes, enhancing their productivity, resilience, and contribution to sustainable global food security.
Collapse
Affiliation(s)
- Hongliang Hu
- Zhejiang-Israel Joint Laboratory for Plant Metrology and Equipment Innovation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Dinesh Kumar Saini
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Tao Yang
- State Key Laboratory of Crop Gene Resources and Breeding/ Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100081, China
| | - Xinyi Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zehao Liu
- State Key Laboratory of Crop Gene Resources and Breeding/ Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100081, China
| | - Farkhandah Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura Campus, Sopore, Jammu and Kashmir 193201, India
| | - Reyazul Rouf Mir
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch WA 6150, Australia
| | - Liu Liu
- Zhejiang Xianghu Laboratory, Hangzhou, China
| | | | - Na Liu
- Zhejiang Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pei Xu
- Zhejiang-Israel Joint Laboratory for Plant Metrology and Equipment Innovation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
2
|
Kohlhase DR, O’Rourke JA, Graham MA. GmGLU1 and GmRR4 contribute to iron deficiency tolerance in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1295952. [PMID: 38476685 PMCID: PMC10927968 DOI: 10.3389/fpls.2024.1295952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Iron deficiency chlorosis (IDC) is a form of abiotic stress that negatively impacts soybean yield. In a previous study, we demonstrated that the historical IDC quantitative trait locus (QTL) on soybean chromosome Gm03 was composed of four distinct linkage blocks, each containing candidate genes for IDC tolerance. Here, we take advantage of virus-induced gene silencing (VIGS) to validate the function of three high-priority candidate genes, each corresponding to a different linkage block in the Gm03 IDC QTL. We built three single-gene constructs to target GmGLU1 (GLUTAMATE SYNTHASE 1, Glyma.03G128300), GmRR4 (RESPONSE REGULATOR 4, Glyma.03G130000), and GmbHLH38 (beta Helix Loop Helix 38, Glyma.03G130400 and Glyma.03G130600). Given the polygenic nature of the iron stress tolerance trait, we also silenced the genes in combination. We built two constructs targeting GmRR4+GmGLU1 and GmbHLH38+GmGLU1. All constructs were tested on the iron-efficient soybean genotype Clark grown in iron-sufficient conditions. We observed significant decreases in soil plant analysis development (SPAD) measurements using the GmGLU1 construct and both double constructs, with potential additive effects in the GmRR4+GmGLU1 construct. Whole genome expression analyses (RNA-seq) revealed a wide range of affected processes including known iron stress responses, defense and hormone signaling, photosynthesis, and cell wall structure. These findings highlight the importance of GmGLU1 in soybean iron stress responses and provide evidence that IDC is truly a polygenic trait, with multiple genes within the QTL contributing to IDC tolerance. Finally, we conducted BLAST analyses to demonstrate that the Gm03 IDC QTL is syntenic across a broad range of plant species.
Collapse
Affiliation(s)
| | - Jamie A. O’Rourke
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Michelle A. Graham
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|