1
|
Choi H, Oh D, Kim M, Jawad A, Zheng H, Cai L, Lee J, Kim E, Lee G, Jang H, Moon C, Hyun SH. Establishment of porcine embryonic stem cells in simplified serum free media and feeder free expansion. Stem Cell Res Ther 2024; 15:245. [PMID: 39113095 PMCID: PMC11304784 DOI: 10.1186/s13287-024-03858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The establishment of stable porcine embryonic stem cells (pESCs) can contribute to basic and biomedical research, including comparative developmental biology, as well as assessing the safety of stem cell-based therapies. Despite these advantages, most pESCs obtained from in vitro blastocysts require complex media and feeder layers, making routine use, genetic modification, and differentiation into specific cell types difficult. We aimed to establish pESCs with a single cell-passage ability, high proliferative potency, and stable in long-term culture from in vitro-derived blastocysts using a simplified serum-free medium. METHODS We evaluated the establishment efficiency of pESCs from in vitro blastocysts using various basal media (DMEM/F10 (1:1), DMEM/F12, and a-MEM) and factors (FGF2, IWR-1, CHIR99021, and WH-4-023). The pluripotency and self-renewal capacity of the established pESCs were analyzed under feeder or feeder-free conditions. Ultimately, we developed a simplified culture medium (FIW) composed of FGF2, IWR-1, and WH-4-023 under serum-free conditions. RESULTS The pESC-FIW lines were capable of single-cell passaging with short cell doubling times and expressed the pluripotency markers POU5F1, SOX2, and NANOG, as well as cell surface markers SSEA1, SSEA4, and TRA-1-60. pESC-FIW showed a stable proliferation rate and normal karyotype, even after 50 passages. Transcriptome analysis revealed that pESC-FIW were similar to reported pESC maintained in complex media and showed gastrulating epiblast cell characteristics. pESC-FIW were maintained for multiple passages under feeder-free conditions on fibronectin-coated plates using mTeSR™, a commercial medium used for feeder-free culture, exhibiting characteristics similar to those observed under feeder conditions. CONCLUSIONS These results indicated that inhibition of WNT and SRC was sufficient to establish pESCs capable of single-cell passaging and feeder-free expansion under serum-free conditions. The easy maintenance of pESCs facilitates their application in gene editing technology for agriculture and biomedicine, as well as lineage commitment studies.
Collapse
Affiliation(s)
- Hyerin Choi
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Haomiao Zheng
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Department of Companion Animal Industry, Semyung University, Jecheon, 27136, Republic of Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins Medicine, Baltimore, ML, USA
| | - Hyewon Jang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea.
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea.
- Vet-ICT Convergence Education and Research Center (VICERC), Chungbuk National University, Cheongju, Republic of Korea.
- Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
2
|
Wang H, Qi LL, Shema C, Jiang KY, Ren P, Wang H, Wang L. Advances in the role and mechanism of fibroblasts in fracture healing. Front Endocrinol (Lausanne) 2024; 15:1350958. [PMID: 38469138 PMCID: PMC10925620 DOI: 10.3389/fendo.2024.1350958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
With the development of social population ageing, bone fracture has become a global public health problem due to its high morbidity, disability and mortality. Fracture healing is a complex phenomenon involving the coordinated participation of immigration, differentiation and proliferation of inflammatory cells, angioblasts, fibroblasts, chondroblasts and osteoblasts which synthesize and release bioactive substances of extracellular matrix components, Mortality caused by age-related bone fractures or osteoporosis is steadily increasing worldwide as the population ages. Fibroblasts play an important role in the process of fracture healing. However, it is not clear how the growth factors and extracellular matrix stiffness of the bone-regeneration microenvironment affects the function of osteoblasts and fibroblasts in healing process. Therefore, this article focuses on the role of fibroblasts in the process of fracture healing and mechanisms of research progress.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-li Qi
- Experimental Center for Teaching of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Clement Shema
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- International Education College of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kui-ying Jiang
- National Demonstration Center for Experimental Basic Medical Education, Capital Medical University, Beijing, China
| | - Ping Ren
- Experimental Center for Teaching of Hebei Medical University, Shijiazhuang, Hebei, China
| | - He Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Wang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Ledesma AV, Mueller ML, Van Eenennaam AL. Review: Progress in producing chimeric ungulate livestock for agricultural applications. Animal 2023; 17 Suppl 1:100803. [PMID: 37567671 DOI: 10.1016/j.animal.2023.100803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 08/13/2023] Open
Abstract
The progress made in recent years in the derivation and culture of pluripotent stem cells from farm animals opens up the possibility of creating livestock chimeras. Chimeras producing gametes exclusively derived from elite donor stem cells could pass superior genetics on to the next generation and thereby reduce the genetic lag that typically exists between the elite breeding sector and the commercial production sector, especially for industries like beef and sheep where genetics is commonly disseminated through natural service mating. Chimeras carrying germ cells generated from genome-edited or genetically engineered pluripotent stem cells could further disseminate useful genomic alterations such as climate adaptation, animal welfare improvements, the repair of deleterious genetic conditions, and/or the elimination of undesired traits such as disease susceptibility to the next generation. Despite the successful production of chimeras with germ cells generated from pluripotent donor stem cells injected into preimplantation-stage blastocysts in model species, there are no documented cases of this occurring in livestock. Here, we review the literature on the derivation of pluripotent stem cells from ungulates, and progress in the production of chimeric ungulate livestock for agricultural applications, drawing on insights from studies done in model species, and discuss future possibilities of this fast-moving and developing field. Aside from the technical aspects, the consistency of the regulatory approach taken by different jurisdictions towards chimeric ungulate livestock with germ cells generated from pluripotent stem cells and their progeny will be an important determinant of breeding industry uptake and adoption in animal agriculture.
Collapse
Affiliation(s)
- Alba V Ledesma
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Maci L Mueller
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Alison L Van Eenennaam
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Zhu Z, Wu X, Li Q, Zhang J, Yu S, Shen Q, Zhou Z, Pan Q, Yue W, Qin D, Zhang Y, Zhao W, Zhang R, Peng S, Li N, Zhang S, Lei A, Miao YL, Liu Z, Chen X, Wang H, Liao M, Hua J. Histone demethylase complexes KDM3A and KDM3B cooperate with OCT4/SOX2 to define a pluripotency gene regulatory network. FASEB J 2021; 35:e21664. [PMID: 34042215 DOI: 10.1096/fj.202100230r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
The pluripotency gene regulatory network of porcine induced pluripotent stem cells(piPSCs), especially in epigenetics, remains elusive. To determine the biological function of epigenetics, we cultured piPSCs in different culture conditions. We found that activation of pluripotent gene- and pluripotency-related pathways requires the erasure of H3K9 methylation modification which was further influenced by mouse embryonic fibroblast (MEF) served feeder. By dissecting the dynamic change of H3K9 methylation during loss of pluripotency, we demonstrated that the H3K9 demethylases KDM3A and KDM3B regulated global H3K9me2/me3 level and that their co-depletion led to the collapse of the pluripotency gene regulatory network. Immunoprecipitation-mass spectrometry (IP-MS) provided evidence that KDM3A and KDM3B formed a complex to perform H3K9 demethylation. The genome-wide regulation analysis revealed that OCT4 (O) and SOX2 (S), the core pluripotency transcriptional activators, maintained the pluripotent state of piPSCs depending on the H3K9 hypomethylation. Further investigation revealed that O/S cooperating with histone demethylase complex containing KDM3A and KDM3B promoted pluripotency genes expression to maintain the pluripotent state of piPSCs. Together, these data offer a unique insight into the epigenetic pluripotency network of piPSCs.
Collapse
Affiliation(s)
- Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Qun Li
- College of Life Science, Northwest A&F University, Yangling, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Shuai Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Qin Pan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wei Yue
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Dezhe Qin
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Ying Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wenxu Zhao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Rui Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, North-East Agricultural University, Harbin, China
| | - Xingqi Chen
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Huayan Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Mingzhi Liao
- College of Life Science, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Chen F, Shi D, Zou L, Yang X, Qiao S, Zhang R, Yang S, Deng Y. Two Small Molecule Inhibitors Promote Reprogramming of Guangxi Bama Mini-Pig Mesenchymal Stem Cells Into Naive-Like State Induced Pluripotent Stem Cells. Cell Reprogram 2021; 23:158-167. [PMID: 33956517 DOI: 10.1089/cell.2020.0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Past researches have shown that pluripotency maintenance of naive and primed-state pluripotent stem cells (PSCs) depends on different signaling pathways, and naive-state PSCs possess the ability to produce chimeras when they are introduced into a blastocyst. Considering porcine is an attractive model for preclinical studies, many researches about pig induced pluripotent stem cells (piPSCs) have been reported. Some cytokines and small molecule compounds could transform primed piPSCs into naive state. However, there are no suitable culture conditions for generation of naive-state piPSCs with high efficiency; other small molecule compounds need further exploration. In this study, we investigated whether p38 MAPK and JNK signal pathway inhibitor SB203580 and SP600125 could be of benefit for acquiring naive-state piPSCs. By comparing reprogramming efficiencies under conditions of different donor cells and culture environment, we found that porcine bone marrow mesenchymal stem cells (PBMSCs) have higher efficiency on piPSC induction, and the culture condition of CHIR99021+PD0325901(2i)+Lif+bFGF is more suitable for subculturing of piPSCs. Our results also indicate that SB203580 and SP600125 could promote reprogramming of PBMSCs into naive-like state piPSCs. These results provide guidance for choosing donor cells, culture conditions, and research of different state iPSCs during the process of reprogramming pig somatic cells.
Collapse
Affiliation(s)
- Feng Chen
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Lingxiu Zou
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Xiaoling Yang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Shuye Qiao
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Ruimen Zhang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Sufang Yang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China.,International Zhuang Medical Hospital Affiliated to Guangxi University Chinese Medicine, Nanning, P.R. China
| | - Yanfei Deng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| |
Collapse
|
6
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
7
|
Zhu Z, Pan Q, Zhao W, Wu X, Yu S, Shen Q, Zhang J, Yue W, Peng S, Li N, Zhang S, Lei A, Hua J. BCL2 enhances survival of porcine pluripotent stem cells through promoting FGFR2. Cell Prolif 2020; 54:e12932. [PMID: 33107129 PMCID: PMC7791183 DOI: 10.1111/cpr.12932] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives The establishment of porcine pluripotent stem cells (pPSCs) is still a critical topic. However, all pPSCs were failed to contribute to efficient chimeric pig and were extremely sensitive to changes of culture conditions. This study aimed to investigate the role of BCL2 in pPSCs and further explain the mechanism. Materials and Methods Porcine BCL2 gene was cloned and overexpressed in porcine induce pluripotent stem cells (piPSCs). Digital RNA‐seq was performed to explain the mechanism of anti‐apoptosis. Finally, the cells carrying BCL2 were injected into mouse early embryo to evaluate its chimeric ability. Results Here, we found that overexpression of porcine BCL2 gene significantly improved the survivability of piPSCs and the efficiency of embryonic chimerism, and did not wreck the pluripotency of piPSCs. Furthermore, the Digital RNA‐seq analysis revealed that BCL2, as a downstream gene of the PI3K signal pathway, enhanced the expression of PI3K signal pathway receptors, such as FGFR2, and further promoted oxidoreductases activity and lipid metabolism, thus maintaining the survival and pluripotency of piPSCs. Conclusion Our data not only suggested that porcine BCL2 gene could enhance the survivability and chimeric ability of pPSCs, but also explained the positive feedback mechanism in this process, providing strong support for the chimeric experiment of pPSCs.
Collapse
Affiliation(s)
- Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Qin Pan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wenxu Zhao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Shuai Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wei Yue
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Jia YY, Zhou JY, Chang Y, An F, Li XW, Xu XY, Sun XL, Xiong CY, Wang JL. Effect of Optimized Concentrations of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Proliferation of Fibroblasts and Expression of Collagen: Related to Pelvic Floor Tissue Regeneration. Chin Med J (Engl) 2018; 131:2089-2096. [PMID: 30127219 PMCID: PMC6111681 DOI: 10.4103/0366-6999.239301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Fibroblasts were the main seed cells in the studies of tissue engineering of the pelvic floor ligament. Basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) were widely studied but at various concentrations. This study aimed to optimize the concentrations of combined bFGF and EGF by evaluating their effects on proliferation and collagen secretion of fibroblasts. Methods: Fibroblasts were differentiated from rat adipose mesenchymal stem cells (ADSCs). Flow cytometry and immunohistochemistry were used for cell identification. The growth factors were applied at concentrations of 0, 1, 10, and 100 ng/ml as three groups: (1) bFGF alone, (2) EGF alone, and (3) bFGF mixed with EGF. Cell proliferation was evaluated by Cell Counting Kit-8 assays. Expression of Type I and III collagen (Col-I and Col-III) mRNAs was evaluated by real-time quantitative reverse transcription-polymerase chain reaction. Statistical analysis was performed with SPSS software and GraphPad Prism using one-way analysis of variance and multiple t-test. Results: ADSCs were successfully isolated from rat adipose tissue as identified by expression of typical surface markers CD29, CD44, CD90, and CD45 in flow cytometry. Fibroblasts induced from ADSC, compared with ADSCs, were with higher mRNA expression levels of Col I and Col III (F = 1.29, P = 0.0390). bFGF, EGF, and the mixture of bFGF with EGF can enhanced fibroblasts proliferation, and the concentration of 10 ng/ml of the mixture of bFGF with EGF displayed most effectively (all P < 0.05). The expression levels of Col-I and Col-III mRNAs in fibroblasts displayed significant increases in the 10 ng/ml bFGF combined with EGF group (all P < 0.05). Conclusions: The optimal concentration of both bFGF and EGF to promote cell proliferation and collagen expression in fibroblasts was 10 ng/ml at which fibroblasts grew faster and secreted more Type I and III collagens into the extracellular matrix, which might contribute to the stability of the pelvic floor microenvironment.
Collapse
Affiliation(s)
- Yuan-Yuan Jia
- Department of Obstetrics and Gynecology, Peking University People's Hospital; Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing 100044, China
| | - Jing-Yi Zhou
- Department of Obstetrics and Gynecology, Peking University People's Hospital; Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing 100044, China
| | - Yue Chang
- Department of Obstetrics and Gynecology, Peking University People's Hospital; Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing 100044, China
| | - Fang An
- Department of Obstetrics and Gynecology, Peking University People's Hospital; Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing 100044, China
| | - Xiao-Wei Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital; Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing 100044, China
| | - Xiao-Yue Xu
- Department of Obstetrics and Gynecology, Peking University People's Hospital; Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing 100044, China
| | - Xiu-Li Sun
- Department of Obstetrics and Gynecology, Peking University People's Hospital; Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing 100044, China
| | - Chun-Yang Xiong
- Department of Mechanics and Bioengineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jian-Liu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital; Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing 100044, China
| |
Collapse
|