1
|
Sutovsky P, Zelenkova N, Postlerova P, Zigo M. Proteostasis as a Sentry for Sperm Quality and Male Fertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:273-303. [PMID: 40301261 DOI: 10.1007/978-3-031-82990-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
In the last two decades, a school of thought emerged that perceives male reproductive health, testicular function, and sperm output as a sentry for general, somatic health. Large-scale epidemiologic studies have already linked the reduced sperm count to increased risk of chronic somatic disease (e.g., cancer, cardiovascular, neurological and bone diseases), yet most of these studies have not taken full advantage of advanced andrological analysis. Altered proteostasis, i.e., the disbalance between protein synthesis and turnover, is a common denominator of many diseases, including but not limited to cancer and neurodegenerative diseases. This chapter introduces the concept of cellular proteostasis as a measure of sperm structural and functional integrity and an endpoint of varied impacts on spermiogenesis and sperm maturation, including heritability, general health, lifestyle, and occupational and environmental reprotoxic exposure. Special consideration is given to small molecule protein modifiers, sperm-binding seminal plasma proteins, zinc-interacting proteins, and redox proteins responsible for the maintenance of protein structure and the protection of spermatozoa from oxidative damage. While the main focus is on human male infertility, serious consideration is given to relevant animal models, and in particular to male food animals with extensive records of fertility from artificial insemination services. Altogether, the proteostatic biomarker discovery and validation studies set the stage for the integration of proteomics of sperm proteostasis with genomic and high throughput phenomic approaches to benefit both human and animal reproductive medicine.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.
| | - Natalie Zelenkova
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Bhushan V, Ali SA, Parashar A, Kumar S, Mohanty AK. Mapping the proteome landscape of Indian Zebu (Sahiwal) spermatozoa using high-resolution mass spectrometry and in-silico annotation. Anim Biotechnol 2024; 35:2428402. [PMID: 39564716 DOI: 10.1080/10495398.2024.2428402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
Proteomic analysis of sperm cells offers significant insights into proteins' structural, functional, and localization aspects within biological systems. Sahiwal, a native Indian cattle breed, is well known for its disease resistance, calving ease, and resilience to drought. This study addressed the gap in Sahiwal's comprehensive sperm proteome profiling data. The research involved the global in-silico quantitative high-resolution mass spectrometry-based protein profiling of Indian Zebu sperm, identifying 4651 sperm proteins. Beyond mere identification, the study characterized these proteins at a sub-organellar level to facilitate a better understanding of their functional attributes. Gene Ontology analysis of sperm proteins facilitated the segregation of proteins based on their function, localization, and mode of action. The study revealed that despite the limited number of organelles, sperm cells encapsulate a wide array of crucial proteins, compensating for the deficiency of organelles through the presence of multifunctional proteins. Most identified sperm proteins actively participate in spermatogenesis, motility, acrosome reaction, capacitation, and seminal plasma binding, directly or indirectly. Notably, the results not only present the highest number of identified bovine sperm proteins but also hold the potential to pave the way for empirical research on sperm functionality, egg-sperm interaction, sperm-sex sorting biomarkers, sperm quality, and bull fertility.
Collapse
Affiliation(s)
- Vanya Bhushan
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Syed Azmal Ali
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
- Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Abhishek Parashar
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Ashok Kumar Mohanty
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
- ICAR-Central Institute for Research on Cattle, Meerut, India
| |
Collapse
|
3
|
Yahyavi SK, Boisen IM, Cui Z, Jorsal MJ, Kooij I, Holt R, Juul A, Blomberg Jensen M. Calcium and vitamin D homoeostasis in male fertility. Proc Nutr Soc 2024; 83:95-108. [PMID: 38072394 DOI: 10.1017/s002966512300486x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Calcium and vitamin D have well-established roles in maintaining calcium balance and bone health. Decades of research in human subjects and animals have revealed that calcium and vitamin D also have effects on many other organs including male reproductive organs. The presence of calcium-sensing receptor, vitamin D receptor, vitamin D activating and inactivating enzymes and calcium channels in the testes, male reproductive tract and human spermatozoa suggests that vitamin D and calcium may modify male reproductive function. Functional animal models have shown that vitamin D deficiency in male rodents leads to a decrease in successful mating and fewer pregnancies, often caused by impaired sperm motility and poor sperm morphology. Human studies have to a lesser extent validated these findings; however, newer studies suggest a positive effect of vitamin D supplementation on semen quality in cases with vitamin D deficiency, which highlights the need for initiatives to prevent vitamin D deficiency. Calcium channels in male reproductive organs and spermatozoa contribute to the regulation of sperm motility and capacitation, both essential for successful fertilisation, which supports a need to avoid calcium deficiency. Studies have demonstrated that vitamin D, as a regulator of calcium homoeostasis, influences calcium influx in the testis and spermatozoa. Emerging evidence suggests a potential link between vitamin D deficiency and male infertility, although further investigation is needed to establish a definitive causal relationship. Understanding the interplay between vitamin D, calcium and male reproductive health may open new avenues for improving fertility outcomes in men.
Collapse
Affiliation(s)
- Sam Kafai Yahyavi
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ida Marie Boisen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Zhihui Cui
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mads Joon Jorsal
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ireen Kooij
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rune Holt
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
4
|
Singh R, Deb R, Sengar GS, Raja TV, Kumar S, Singh U, Das AK, Alex R, Kumar A, Tyagi S, Pal P, Patil NV. Differentially expressed microRNAs in biochemically characterized Frieswal TM crossbred bull semen. Anim Biotechnol 2023; 34:25-38. [PMID: 34106815 DOI: 10.1080/10495398.2021.1932519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In addition to the transmission of paternal genome, spermatozoa also carry coding as well as noncoding microRNAs (miRNAs) into the female oocyte during the process of biological fertilization. Based on RNA deep sequencing, a total 28 number of differentially expressed miRNAs were cataloged in categorized FrieswalTM crossbred (Holstein Friesian X Sahiwal) bull semen on the basis of conception rate (CR) in field progeny testing program. Validation of selected miRNAs viz. bta-mir-182, bta-let-7b, bta-mir-34c and bta-mir-20a revealed that, superior bull semen having comparatively (p < .05) lower level of all the miRNAs in contrast to inferior bull semen. Additionally, it was illustrated that, bta-mir-20a and bta-mir-34c miRNAs are negatively (p < .01) correlated with seminal plasma catalase (CAT) activity and glutathione peroxidase (GPx) level. Interactome studies identified that bta-mir-140, bta-mir-342, bta-mir-1306 and bta-mir-217 can target few of the important solute carrier (SLC) proteins viz. SLC30A3, SLC39A9, SLC31A1 and SLC38A2, respectively. Interestingly, it was noticed that all the SLCs were significantly (p < .05) expressed at higher level in superior quality bull semen and they are negatively correlated (p < .01) with their corresponding miRNAs as mentioned. This study may reflect the role of miRNAs in regulating few of the candidate genes and thus may influence the bull semen quality traits.
Collapse
Affiliation(s)
- Rani Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Rajib Deb
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Gyanendra Singh Sengar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - T V Raja
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Umesh Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - A K Das
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Rani Alex
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Amod Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Shrikant Tyagi
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Prasanna Pal
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - N V Patil
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| |
Collapse
|
5
|
The stallion sperm acrosome: Considerations from a research and clinical perspective. Theriogenology 2023; 196:121-149. [PMID: 36413868 DOI: 10.1016/j.theriogenology.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
During the fertilization process, the interaction between the sperm and the oocyte is mediated by a process known as acrosomal exocytosis (AE). Although the role of the sperm acrosome on fertilization has been studied extensively over the last 70 years, little is known about the molecular mechanisms that govern acrosomal function, particularly in species other than mice or humans. Even though subfertility due to acrosomal dysfunction is less common in large animals than in humans, the evaluation of sperm acrosomal function should be considered not only as a complementary but a routine test when individuals are selected for breeding potential. This certainly holds true for stallions, which might display lower levels of fertility in the face of "acceptable" sperm quality parameters determined by conventional sperm assays. Nowadays, the use of high throughput technologies such as flow cytometry or mass spectrometry-based proteomic analysis is commonplace in the research arena. Such techniques can also be implemented in clinical scenarios of males with "idiopathic" subfertility. The current review focuses on the sperm acrosome, with particular emphasis on the stallion. We aim to describe the physiological events that lead to the acrosome formation within the testis, the role of very specific acrosomal proteins during AE, the methods to study the occurrence of AE under in vitro conditions, and the potential use of molecular biology techniques to discover new markers of acrosomal function and subfertility associated with acrosomal dysfunction in stallions.
Collapse
|
6
|
Falchi L, Cesarani A, Mastrangelo S, Senczuk G, Portolano B, Pilla F, Macciotta NPP. Analysis of runs of homozygosity of cattle living in different climate zones. J Anim Sci 2023; 101:skad061. [PMID: 36802370 PMCID: PMC10066727 DOI: 10.1093/jas/skad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Aim of this study was to analyze the distribution and characteristics of runs of homozygosity in Bos taurus taurus and Bos taurus indicus breeds, as well as their crosses, farmed all around the world. With this aim in view, we used single-nucleotide polymorphisms (SNP) genotypes for 3,263 cattle belonging to 204 different breeds. After quality control, 23,311 SNPs were retained for the analysis. Animals were divided into seven different groups: 1) continental taurus, 2) temperate taurus, 3) temperate indicus, 4) temperate composite, 5) tropical taurus, 6) tropical indicus, and 7) tropical composite. The climatic zones were created according to the latitude of the breeds' country of origin: i) continental, latitude ≥ 45°; ii) temperate, 45°< Latitude >23.26°; iii) tropics, latitude ≤ 23.26°. Runs of homozygosity were computed as 15 SNPs spanning in at least 2 Mb; number of ROH per animal (nROH), average ROH length (meanMb), and ROH-based inbreeding coefficients (FROH) were also computed. Temperate indicus showed the largest nROH, whereas Temperate taurus the lowest value. Moreover, the largest meanMb was observed for Temperate taurus, whereas the lowest value for Tropics indicus. Temperate indicus breeds showed the largest FROH values. Genes mapped in the identified ROH were reported to be associated with the environmental adaptation, disease resistance, coat color determinism, and production traits. Results of the present study confirmed that runs of homozygosity could be used to identify genomic signatures due to both artificial and natural selection.
Collapse
Affiliation(s)
- Laura Falchi
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
- Department of Animal and Dairy Science, University of Georgia, 30602 Athens, USA
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy
| | - Baldassare Portolano
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy
| | | |
Collapse
|
7
|
Boisen IM, Rehfeld A, Mos I, Poulsen NN, Nielsen JE, Schwarz P, Rejnmark L, Dissing S, Bach-Mortensen P, Juul A, Bräuner-Osborne H, Lanske B, Blomberg Jensen M. The Calcium-Sensing Receptor Is Essential for Calcium and Bicarbonate Sensitivity in Human Spermatozoa. J Clin Endocrinol Metab 2021; 106:e1775-e1792. [PMID: 33340048 DOI: 10.1210/clinem/dgaa937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT The calcium-sensing receptor (CaSR) is essential to maintain a stable calcium concentration in serum. Spermatozoa are exposed to immense changes in concentrations of CaSR ligands such as calcium, magnesium, and spermine during epididymal maturation, in the ejaculate, and in the female reproductive environment. However, the role of CaSR in human spermatozoa is unknown. OBJECTIVE This work aimed to investigate the role of CaSR in human spermatozoa. METHODS We identified CaSR in human spermatozoa and characterized the response to CaSR agonists on intracellular calcium, acrosome reaction, and 3',5'-cyclic adenosine 5'-monophosphate (cAMP) in spermatozoa from men with either loss-of-function or gain-of-function mutations in CASR and healthy donors. RESULTS CaSR is expressed in human spermatozoa and is essential for sensing extracellular free ionized calcium (Ca2+) and Mg2+. Activators of CaSR augmented the effect of sperm-activating signals such as the response to HCO3- and the acrosome reaction, whereas spermatozoa from men with a loss-of-function mutation in CASR had a diminished response to HCO3-, lower progesterone-mediated calcium influx, and were less likely to undergo the acrosome reaction in response to progesterone or Ca2+. CaSR activation increased cAMP through soluble adenylyl cyclase (sAC) activity and increased calcium influx through CatSper. Moreover, external Ca2+ or Mg2+ was indispensable for HCO3- activation of sAC. Two male patients with a CASR loss-of-function mutation in exon 3 presented with normal sperm counts and motility, whereas a patient with a loss-of-function mutation in exon 7 had low sperm count, motility, and morphology. CONCLUSION CaSR is important for the sensing of Ca2+, Mg2+, and HCO3- in spermatozoa, and loss-of-function may impair male sperm function.
Collapse
Affiliation(s)
- Ida Marie Boisen
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Division of Bone and Mineral Research, Harvard School of Dental Medicine/Harvard Medical School, Harvard University, Boston, MA, USA
| | - Anders Rehfeld
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Iris Mos
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadia Nicholine Poulsen
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Erik Nielsen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schwarz
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Rejnmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Steen Dissing
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Beate Lanske
- Division of Bone and Mineral Research, Harvard School of Dental Medicine/Harvard Medical School, Harvard University, Boston, MA, USA
| | - Martin Blomberg Jensen
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Division of Bone and Mineral Research, Harvard School of Dental Medicine/Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
8
|
Singh R, Junghare V, Hazra S, Singh U, Sengar GS, Raja TV, Kumar S, Tyagi S, Das AK, Kumar A, Koringa P, Jakhesara S, Joshi CJ, Deb R. Database on spermatozoa transcriptogram of catagorised Frieswal crossbred (Holstein Friesian X Sahiwal) bulls. Theriogenology 2019; 129:130-145. [PMID: 30844654 DOI: 10.1016/j.theriogenology.2019.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/11/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
Bull spermatozoa contain different functional genes and many of them plays important roles in different stages of spermatogenesis, spermatozoa kinetics, fertilization as well as embryonic development. RNA deep sequencing is one of the preferred tools for absolute quantification of messenger RNA. The intention of the current study was to investigate the abundance of spermatozoal transcripts in categorized Frieswal (Holstein-Friesian X Sahiwal) crossbred bull semen through RNA deep sequencing. A total 1546561 and 1019308 numbers of reads were identified among good and poor quality bull spermatozoa based on their conception rate. Post mapping with Bos taurus reference genome identified 1,321,236 and 842,022 number of transcripts among good and poor quality RNA libraries, respectively. However, a total number of 3510 and 6759 functional transcripts were identified among good and poor quality bull spermatozoa, respectively. Most of the identified transcripts were related to spermatozoa functions, embryonic development and other functional aspects of fertilization. Wet laboratory validation of the top five selected transcripts (AKAP4, PRM1, ATP2B4, TRIM71 and SLC9B2) illustrated the significant (p < 0.01) level of expression in the good quality crossbred bull semen than the poor quality counterparts. The present study with comprehensive profiling of spermatozoal transcripts provides a useful non-invasive tool to understand the causes of as well as an effective way to predict male infertility in crossbred bulls.
Collapse
Affiliation(s)
- Rani Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India.
| | - Vivek Junghare
- Department of Biotechnology, Center of Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Saugata Hazra
- Department of Biotechnology, Center of Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Umesh Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - Gyanendra Singh Sengar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - T V Raja
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - Shrikant Tyagi
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - A K Das
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - Ashish Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - Prakash Koringa
- Ome Research Laboratory, Anand Agricultural University, Anand, Gujarat, India
| | - Subhash Jakhesara
- Ome Research Laboratory, Anand Agricultural University, Anand, Gujarat, India
| | - C J Joshi
- Ome Research Laboratory, Anand Agricultural University, Anand, Gujarat, India
| | - Rajib Deb
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India.
| |
Collapse
|
9
|
Melo TP, Fortes MRS, Bresolin T, Mota LFM, Albuquerque LG, Carvalheiro R. Multitrait meta-analysis identified genomic regions associated with sexual precocity in tropical beef cattle. J Anim Sci 2018; 96:4087-4099. [PMID: 30053002 DOI: 10.1093/jas/sky289] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
Multitrait meta-analyses are a strategy to produce more accurate genome-wide association studies, especially for complex phenotypes. We carried out a meta-analysis study for traits related to sexual precocity in tropical beef cattle (Nellore and Brahman) aiming to identify important genomic regions affecting these traits. The traits included in the analyses were age at first calving (AFC), early pregnancy (EP), age at first corpus luteum (AGECL), first postpartum anoestrus interval (PPAI), and scrotal circumference (SC). The traits AFC, EP, and SCN were measured in Nellore cattle, while AGECL, PPAI, and SCB were measured in Brahman cattle. Meta-analysis resulted in 108 significant single-nucleotide polymorphisms (SNPs), at an empirical threshold P-value of 1.39 × 10-5 (false discovery rate [FDR] < 0.05). Within 0.5 Mb of the significant SNP, candidate genes were annotated and analyzed for functional enrichment. Most of the closest genes to the SNP with higher significance in each chromosome have been associated with important roles in reproductive function. They are TSC22D2, KLF7, ARHGAP29, 7SK, MAP3K5, TLE3, WDR5, TAF3, TMEM68, PPP1R15B, NR2F2, GALR1, SUFU, and KCNU1. We did not observe any significant SNP in BTA5, BTA12, BTA17, BTA18, BTA19, BTA20, BTA22, BTA23, BTA25, and BTA28. Although the majority of significant SNPs are in BTA14, it was identified significant associations in multiple chromosomes (19 out of 29 autosomes), which is consistent with the postulation that reproductive traits are complex polygenic phenotypes. Five proposed association regions harbor the majority of the significant SNP (76%) and were distributed over four chromosomes (P < 1.39 × 10-5, FDR < 0.05): BTA2 (5.55%) from 95 to 96 Mb, BTA4 (5.55%) from 94.1 to 94.8 Mb, BTA14 (59.26%) from 24 to 25 Mb and 29 to 30 Mb, and BTA21 (5.55%) from 6.7 Mb to 11.4 Mb. These regions harbored key genes related to reproductive function. Moreover, these genes were enriched for functional groups associated with immune response, maternal-fetal tolerance, pregnancy maintenance, embryo development, fertility, and response to stress. Further studies including other breeds and precocity traits could confirm the importance of these regions and identify new candidate regions for sexual precocity in beef cattle.
Collapse
Affiliation(s)
- Thaise P Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia.,The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, Queensland, Australia
| | - Tiago Bresolin
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucia G Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| |
Collapse
|