1
|
Esmaeilivand M, Abedelahi A, Hamdi K, Farzadi L, Goharitaban S, Fattahi A, Niknafs B. Role of miRNAs in preimplantation embryo development and their potential as embryo selection biomarkers. Reprod Fertil Dev 2022; 34:589-597. [PMID: 35440361 DOI: 10.1071/rd21274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
CONTEXT MicroRNAs (miRNAs) play different roles in oocyte fertilisation, degradation of maternal transcripts, embryo development, and implantation. During in vitro fertilisation (IVF), different miRNAs are released from embryos into the spent culture media (SCM) that can potentially reflect the status of the embryo. AIMS This study is the assessment of miRNAs, which secreted in SCM during the IVF cycles can be used as noninvasive biomarkers to predict an embryo's ability to form a blastocyst, implant, and give live birth. METHODS Systematic literature search was conducted to review all recent studies about miRNAs as potential non-invasive biomarkers for selecting the best embryos in the assisted reproductive technology (ART) cycle. KEY RESULTS Studies have shown that levels of some miRNAs in the SCM have an association with the implantation potential and pregnancy outcome of the embryo. CONCLUSIONS Embryo-secreted miRNAs can be used as potential non-invasive biomarkers for selecting the best embryos in the ART cycle. Unfortunately, few human studies evaluated the association between ART outcomes and miRNAs in SCM. IMPLICATIONS This review can pave the way for further miRNAs transcriptomic studies on human embryo culture media and introducing a specific miRNA profile as a multivariable prediction model for embryo selection in IVF cycles.
Collapse
Affiliation(s)
- Masoumeh Esmaeilivand
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepide Goharitaban
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; and Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Miao X, Cui W. Berberine alleviates LPS-induced apoptosis, oxidation, and skewed lineages during mouse preimplantation development†. Biol Reprod 2022; 106:699-709. [PMID: 35024788 PMCID: PMC9040657 DOI: 10.1093/biolre/ioac002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 01/14/2023] Open
Abstract
Female infertility is a heterogeneous disorder with a variety of complex causes, including inflammation and oxidative stress, which are also closely associated with the pathogenesis of polycystic ovary syndrome (PCOS). As a new treatment for PCOS, berberine (BER), a natural compound from Berberis, has been clinically applied recently. However, the mechanisms underlying the association between BER and embryogenesis are still largely unknown. In this study, effects of BER on preimplantation development were evaluated under both normal and inflammatory culture conditions induced by lipopolysaccharide (LPS) in mice. Our data first suggest that BER itself (25 nM) does not affect embryo quality or future developmental potency; however, it can effectively alleviate LPS-induced embryo damage by mitigating apoptosis via reactive oxygen species (ROS)-/caspase-3-dependent pathways and by suppressing proinflammatory cytokines via inhibition of the NF-κB signaling pathway during preimplantation embryonic development. In addition, skewed cell lineage specification in the inner cell mass (ICM) and primitive endoderm (PE) caused by LPS can also be successfully rescued with BER. In summary, these findings for the first time demonstrate the nontoxicity of low doses of BER and its antiapoptotic and antioxidative properties on embryonic cells during mammalian preimplantation development.
Collapse
Affiliation(s)
- Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.,Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
3
|
Dai J, Huang X, Zhang C, Luo X, Cao S, Wang J, Liu B, Gao J. Berberine regulates lipid metabolism via miR-192 in porcine oocytes matured in vitro. Vet Med Sci 2021; 7:950-959. [PMID: 33818910 PMCID: PMC8136937 DOI: 10.1002/vms3.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background The berberine (Ber) is an isoquinoline alkaloid compound extracted from Rhizoma coptidis and has the effect that reduces adipose. MicroRNA‐192 (miR‐192) is related to fat metabolism. However, the relevant mechanism of berberine on lipid metabolism during in vitro maturation (IVM) of porcine oocytes remains unclear. Objectives In this study, we investigated the molecular mechanism by which berberine promotes the IVM and lipid metabolism of porcine oocytes via miR‐192. Methods Ber was added to IVM medium of porcine oocytes. MiR‐192 agomir, miR‐192 antagomir and negative control fragment were microinjected into the cytoplasm of oocytes without Ber. Rates of oocyte IVM and embryonic development in each group were observed. The content of lipid droplets in IVM oocytes in each group was analyzed by Nile red staining. Expression levels of miR‐192 and FABP3, SREBF1 and PPARG, were detected by qPCR and western blotting. The target genes of miR‐192 were determined by luciferase reporter assays. Results and Conclusions We found that Ber significantly increased the rate of oocytes IVM and blastocyst development, and decreased the area and numbers of lipid droplets in IVM oocytes. Ber significantly increased the expression of miR‐192 in IVM oocytes, and significantly decreased the expression of SREBF1 and PPARG, which were target genes of miR‐192. This study indicates that Ber promotes lipid metabolism in porcine oocytes by activating the expression of miR‐192 and down‐regulating SREBF1 and PPARG, thus, improving IVM of porcine oocytes.
Collapse
Affiliation(s)
- JiaGe Dai
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - XiaoMeng Huang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Chao Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - XiaoFei Luo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - SuYing Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - JunLi Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Bing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - JianMing Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
4
|
Martini D, Pucci C, Gabellini C, Pellegrino M, Andreazzoli M. Exposure to the natural alkaloid Berberine affects cardiovascular system morphogenesis and functionality during zebrafish development. Sci Rep 2020; 10:17358. [PMID: 33060638 PMCID: PMC7566475 DOI: 10.1038/s41598-020-73661-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
The plant-derived natural alkaloid berberine displays therapeutic potential to treat several pathological conditions, including dyslipidemias, diabetes and cardiovascular disorders. However, data on berberine effects during embryonic development are scarce and in part controversial. In this study, using zebrafish embryos as vertebrate experimental model, we address the effects of berberine treatment on cardiovascular system development and functionality. Starting from the observation that berberine induces developmental toxicity and pericardial edema in a time- and concentration-dependent manner, we found that treated embryos display cardiac looping defects and, at later stages, present an abnormal heart characterized by a stretched morphology and atrial endocardial/myocardial detachment. Furthermore, berberine affected cardiac functionality of the embryos, promoting bradycardia and reducing the cardiac output, the atrial shortening fraction percentage and the atrial stroke volume. We also found that, during development, berberine interferes with the angiogenic process, without altering vascular permeability. These alterations are associated with increased levels of vascular endothelial growth factor aa (vegfaa) mRNA, suggesting an important role for Vegfaa as mediator of berberine-induced cardiovascular defects. Altogether, these data indicate that berberine treatment during vertebrate development leads to an impairment of cardiovascular system morphogenesis and functionality, suggesting a note of caution in its use during pregnancy and lactation.
Collapse
Affiliation(s)
- Davide Martini
- Cell and Developmental Biology Unit, Department of Biology, University of Pisa, SS12 Abetone e Brennero, 56127, Pisa, Italy
| | - Cecilia Pucci
- Cell and Developmental Biology Unit, Department of Biology, University of Pisa, SS12 Abetone e Brennero, 56127, Pisa, Italy.,Sant'Anna School of Advanced Studies, Pisa, Italy.,Institute of Genomic Medicine, Catholic University, 00168, Rome, Italy
| | - Chiara Gabellini
- Cell and Developmental Biology Unit, Department of Biology, University of Pisa, SS12 Abetone e Brennero, 56127, Pisa, Italy
| | - Mario Pellegrino
- National Institute of Optics, National Research Council, Pisa, Italy
| | - Massimiliano Andreazzoli
- Cell and Developmental Biology Unit, Department of Biology, University of Pisa, SS12 Abetone e Brennero, 56127, Pisa, Italy. .,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
In vitro Production of Porcine Embryos: Current Status and Possibilities – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This paper presents the current possibilities, state of knowledge and prospects of in vitro production (IVP) of pig embryos, which consists of in vitro oocyte maturation, in vitro fertilization and in vitro embryo culture. In pigs, oocyte maturation is one of the most important stages in the embryo IVP process. It determines the oocyte’s fertilization ability as well as its embryonic development. Through many research studies of the proper selection of oocytes and appropriate maturation medium composition (especially the addition of various supplements), the in vitro maturation of pig oocytes has been significantly improved. Recent studies have demonstrated that modifications of the diluents and in vitro fertilization media can reduce polyspermy. Furthermore, several adjustments of the porcine culture media with the addition of some supplements have enhanced the embryo quality and developmental competence. These updates show the progress of IVP in pigs that has been achieved; however, many problems remain unsolved.
Collapse
|
6
|
Antiangiogenic Effect of Alkaloids. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9475908. [PMID: 31178979 PMCID: PMC6501137 DOI: 10.1155/2019/9475908] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/06/2019] [Accepted: 03/17/2019] [Indexed: 01/08/2023]
Abstract
Alkaloids are among the natural phytochemicals contained in functional foods and nutraceuticals and have been suggested for the prevention and/or management of oxidative stress and inflammation-mediated diseases. In this review, we aimed to describe the effects of alkaloids in angiogenesis, the process playing a crucial role in tumor growth and invasion, whereby new vessels form. Antiangiogenic compounds including herbal ingredients, nonherbal alkaloids, and microRNAs can be used for the control and treatment of cancers. Several lines of evidence indicate that alkaloid-rich plants have several interesting features that effectively inhibit angiogenesis. In this review, we present valuable data on commonly used alkaloid substances as potential angiogenic inhibitors. Different herbal and nonherbal ingredients, introduced as antiangiogenesis agents, and their role in angiogenesis-dependent diseases are reviewed. Studies indicate that angiogenesis suppression is exerted through several mechanisms; however, further investigations are required to elucidate their precise molecular and cellular mechanisms, as well as potential side effects.
Collapse
|