1
|
Odogwu NM, Jang JS, Albertson S, Hagen C, Rasmussen B, Saji O, Nelson TJ. Optimizing RNA extraction methods for high-throughput transcriptome sequencing of formalin-fixed paraffin-embedded cardiac tissue specimens. PLoS One 2024; 19:e0315098. [PMID: 39724161 DOI: 10.1371/journal.pone.0315098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Archived FFPE cardiac tissue specimens are valuable for molecular studies aimed at identifying biomarkers linked to mortality in cardiovascular disease. Establishing a reliable and reproducible RNA extraction method is critical for generating high-quality transcriptome sequences for molecular assays. Here, the efficiency of four RNA extraction methods: Qiagen AllPrep DNA/RNA method (Method QP); Qiagen AllPrep DNA/RNA method with protocol modification on the ethanol wash step after deparaffinization (Method QE); CELLDATA RNA extraction (Method BP) and CELLDATA RNA extraction with protocol modifications on the lysis step (Method BL) was compared on 23 matching FFPE cardiac tissue specimens (n = 92).In comparing RNA quality metrics across FFPE RNA extract, nucleic acids extracted deploying Method QE and QP produced the highest RNA yield. However, Method QE outperformed Method QP as more extract from Method QE had DV 200 values above 30%. Both method BL and BP produced similar range of RNA purity and yield but more extract from Method BL had DV 200 values above 30% compared to Method BP. When accessing distribution value, Method BL outperformed Methods BP, QE, and QP as more extracts from Method BL had DV 200 values above 30% compared to other methods (PDV200<0.001; Kruskal-Wallis). Method QE outperformed other methods in terms of RNA yield. RNA extracts from Method QE, characterized by high RNA yield, achieved sequencing results comparable to those from Method BL, characterized by high DV200 values. Our findings reveal that optimizing protocols can yield higher-quality RNA, facilitating the exploration of more disease conditions with high-resolution transcriptome profiling.
Collapse
Affiliation(s)
- Nkechi Martina Odogwu
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
| | - Jin Sung Jang
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
| | - Sabrina Albertson
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
| | - Clinton Hagen
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
| | - Boyd Rasmussen
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
| | - Oommen Saji
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
| | - Timothy J Nelson
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
- Division of Cardiovascular Medicine, General Internal Medicine, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
- Center for Regenerative Medicine, Mayo Clinic Rochester, Rochester, Minnesota, United States of America
| |
Collapse
|
2
|
Estrogens Regulate Placental Angiogenesis in Horses. Int J Mol Sci 2021; 22:ijms222212116. [PMID: 34829994 PMCID: PMC8621320 DOI: 10.3390/ijms222212116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
A sufficient vascular network within the feto-maternal interface is necessary for placental function. Several pregnancy abnormalities have been associated with abnormal vascular formations in the placenta. We hypothesized that growth and expansion of the placental vascular network in the equine (Equus caballus) placenta is regulated by estrogens (estrogen family hormones), a hormone with a high circulating concentration during equine gestation. Administration of letrozole, a potent and specific inhibitor of aromatase, during the first trimester (D30 to D118), decreased circulatory estrone sulfate concentrations, increased circulatory testosterone and androstenedione concentrations, and tended to reduce the weight of the fetus (p < 0.1). Moreover, the gene expression of CYP17A1 was increased, and the expression of androgen receptor was decreased in the D120 chorioallantois (CA) of letrozole-treated mares in comparison to that of the control mares. We also found that at D120, the number of vessels tended to decrease in the CAs with letrozole treatment (p = 0.07). In addition, expression of a subset of angiogenic genes, such as ANGPT1, VEGF, and NOS2, were altered in the CAs of letrozole-treated mares. We further demonstrated that 17β-estradiol increases the expression of ANGPT1 and VEGF and increases the angiogenic activity of equine endothelial cells in vitro. Our results from the estrogen-suppressed group demonstrated an impaired placental vascular network, suggesting an estrogen-dependent vasculogenesis in the equine CA during the first trimester.
Collapse
|
3
|
Dini P, Carossino M, Balasuriya UBR, El-Sheikh Ali H, Loux SC, Esteller-Vico A, Scoggin KE, Loynachan AT, Kalbfleisch T, De Spiegelaere W, Daels P, Ball BA. Paternally expressed retrotransposon Gag-like 1 gene, RTL1, is one of the crucial elements for placental angiogenesis in horses†. Biol Reprod 2021; 104:1386-1399. [PMID: 33693478 DOI: 10.1093/biolre/ioab039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/08/2020] [Accepted: 03/03/2021] [Indexed: 11/15/2022] Open
Abstract
RTL1 (retrotransposon Gag-like 1) is an essential gene in the development of the human and murine placenta. Several fetal and placental abnormalities such as intrauterine growth restriction (IUGR) and hydrops conditions have been associated with altered expression of this gene. However, the function of RTL1 has not been identified. RTL1 is located on a highly conserved region in eutherian mammals. Therefore, the genetic and molecular analysis in horses could hold important implications for other species, including humans. Here, we demonstrated that RTL1 is paternally expressed and is localized within the endothelial cells of the equine (Equus caballus) chorioallantois. We developed an equine placental microvasculature primary cell culture and demonstrated that RTL1 knockdown leads to loss of the sprouting ability of these endothelial cells. We further demonstrated an association between abnormal expression of RTL1 and development of hydrallantois. Our data suggest that RTL1 may be essential for placental angiogenesis, and its abnormal expression can lead to placental insufficiency. This placental insufficiency could be the reason for IUGR and hydrops conditions reported in other species, including humans.
Collapse
Affiliation(s)
- Pouya Dini
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Mariano Carossino
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Udeni B R Balasuriya
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.,Theriogenology Department, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt
| | - Shavahn C Loux
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Alejandro Esteller-Vico
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Kirsten E Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Alan T Loynachan
- Veterinary Diagnostic Laboratory, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Theodore Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Peter Daels
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Barry A Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
4
|
Equine hydrallantois is associated with impaired angiogenesis in the placenta. Placenta 2020; 93:101-112. [PMID: 32250734 DOI: 10.1016/j.placenta.2020.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hydrallantois is the excessive accumulation of fluid in the allantoic cavities during the last trimester of pregnancy, leading to abdominal wall hernias, cardiovascular shock, abortion, and dystocia. It has been postulated that hydrallantois is associated with structural and/or functional changes in the chorioallantoic membrane. In the present study, we hypothesized that angiogenesis is impaired in the hydrallantoic placenta. METHOD Capillary density in the hydrallantoic placenta was evaluated in the chorioallantois via immunohistochemistry for Von Willebrand Factor. Moreover, the expression of angiogenic genes was compared between equine hydrallantois and age-matched, normal placentas. RESULTS In the hydrallantoic samples, edema was the main pathological finding. The capillary density was significantly lower in the hydrallantoic samples than in normal placentas. The reduction in the number of vessels was associated with abnormal expression of a subset of angiogenic and hypoxia-associated genes including VEGF, VEGFR1, VEGFR2, ANGPT1, eNOS and HIF1A. We believe that the capillary density and the abnormal expression of angiogenic genes leads to tissue hypoxia (high expression of HIF1A) and edema. Finally, we identified a lower expression of genes associated with steroidogenic enzyme (CYP19A1) and estrogen receptor signaling (ESR2) in the hydrallantoic placenta. DISCUSSION Based on the presented data, we believe that formation of edema is due to disrupted vascular development (low number of capillaries) and hypoxia in the hydrallantoic placenta. The edema leads to further hypoxia and consequently, causes an increase in vessel permeability which leads to a gradual increase in interstitial fluid accumulation, resulting in an insufficient transplacental exchange rate and accumulation of fluid in the allantoic cavity.
Collapse
|