1
|
Yan Y, Niu Y, Ma Y, Zhao X, Pan M, Ma B, Wei Q. Estradiol Regulates the Expression and Secretion of Antimicrobial Peptide S100A7 via the ERK1/2-Signaling Pathway in Goat Mammary Epithelial Cells. Animals (Basel) 2022; 12:3077. [PMID: 36428305 PMCID: PMC9687026 DOI: 10.3390/ani12223077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
S100A7 has received extensive attention in the prevention and treatment of mastitis across a broad spectrum, yet there is a little information about its mechanism, especially in the immunomodulatory effects of estrogen. In the present study, based on the milk bacteriological culture (BC) of 30 dairy goats, the concentration of both estrogen and S100A7 in the BC-positive samples was not significantly different than in the BC-negative samples; the estrogen abundance in subclinical and clinical mastitis samples also showed only a limited difference; compared with healthy samples, the S100A7 abundance in subclinical mastitis samples differed little, while it was significantly decreased in clinical mastitis samples. Moreover, the relationship between estrogen and S100A7 was positive, and the regression equation was y = 0.3206x + 23.459. The goat mammary epithelial cells (gMECs) were isolated and treated with 1, 10, 100 nM E2 and/or 5 μg/mL lipopolysaccharide (LPS), respectively, for 6 h. Compared with control samples, 5 μg/mL LPS, 10 nM E2 and 100 nM E2 markedly induced S100A7 expression and secretion. More than separated treatment, the cooperation of LPS and E2 also significantly increased S100A7 expression, rather than S100A7 secretion. The p-ERK was up-regulated markedly with 100 nM E2 treatment, while the expression of p-JNK, p-p38 and p-Akt had little effect. The G protein-coupled estrogen receptor 1(GPER1) agonist G1 markedly induced S100A7 expression and secretion in gMECs, and the estrogen nuclear receptor antagonist ICI and GPER1 antagonist G15 significantly repressed this process. In conclusion, E2 binds to nuclear and membrane receptors to regulate the expression and secretion of S100A7 via the ERK1/2-signaling pathway in gMECs.
Collapse
Affiliation(s)
- Yutong Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yuwei Niu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yingwan Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
2
|
G protein-coupled estrogen receptor 1 mediates proliferation and adipogenic differentiation of goat adipose-derived stem cells through ERK1/2-NF-κB signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:494-503. [PMID: 35607957 PMCID: PMC9828292 DOI: 10.3724/abbs.2022031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Adipose tissue formation and moderate fat deposition are important for the production performance and eating quality of livestock meats. The self-renewal and adipogenic differentiation of adipose-derived stem cells are responsible for the formation and development of adipose tissue. In addition, estrogen targeting G protein-coupled estrogen receptor 1 (GPER1) has been reported to modulate cell proliferation and differentiation during tissue and organ development. However, the potential correlation among estrogen, GPER1, proliferation, and adipogenic differentiation in goat adipose-derived stem cells (gADSCs) is still unclear. Herein, we demonstrated that 17β-estradiol enhances the proliferative ability of gADSCs, indicated by the increased cell number and cell viability, accompanied by up-regulated expressions of cyclin D1 and PCNA. Meanwhile, the adipogenic differentiation is promoted by 17β-estradiol, supported by higher ccumulation of intracellular lipids and increased expressions of PPARγ, ACC, and FABP4. Notably, these activities are all obviously reduced by administration with GPER1 antagonist G15, but GPER1 agonist G1 enhances cell proliferation and adipogenic differentiation. Moreover, GPER1 silencing diminishes cell proliferation and adipogenic differentiation. In parallel, 17β-estradiol elevates the protein level of nuclear p-p65. Furthermore, the phosphorylation of p65 is enhanced by G1 but inhibited by G15 and GPER1 silencing. In addition, the phosphorylation of p65 is mediated by ERK1/2, suggesting that estrogen targeting GPER1 regulates cell proliferation and adipogenic differentiation of gADSCs through the ERK1/2-NF-κB signaling pathway. This study may provide a strong theoretical basis for improving meat quality, flavor, and cold resistance of livestock.
Collapse
|
3
|
Decreased Expression of Estrogen Receptors Is Associated with Tumorigenesis in Papillary Thyroid Carcinoma. Int J Mol Sci 2022; 23:ijms23031015. [PMID: 35162942 PMCID: PMC8835567 DOI: 10.3390/ijms23031015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/05/2022] Open
Abstract
Papillary thyroid carcinomas (PTC), which is derived from thyroid follicular cells, is the most commonly differentiated thyroid cancer with sex disparity. However, the role of estrogen receptors (ERs) in the pathogenesis of PTC remains unclear. The present study aimed to determine the association of ER mRNA expression levels with clinicopathologic features in PTC. To that aim, the mRNA levels of ESR1 (ERα66), ESR1 (ERα36), ESR2, and G-protein-coupled estrogen receptor 1 (GPER1) in snap-frozen tissue samples from PTCs and adjacent normal thyroid tissues were determined using quantitative reverse transcription polymerase chain reaction (RT-qPCR), and the correlation between ER mRNA expression levels and clinicopathologic features was analyzed. The expression of ERα66, ERα36, ERβ, and GPER1 was lower in PTC specimens than in adjacent normal thyroid tissues. Moreover, low GPER1 expression was associated with extrathyroidal extension. There was no obvious difference in expression of ERs between PTC specimens from male and female patients. In conclusion, our findings highlight the importance of ERs in PTC tumorigenesis.
Collapse
|
4
|
Liu H, Zhao Y, Wu Y, Yan Y, Zhao X, Wei Q, Ma B. NF-κB-Dependent Snail Expression Promotes Epithelial-Mesenchymal Transition in Mastitis. Animals (Basel) 2021; 11:ani11123422. [PMID: 34944199 PMCID: PMC8698035 DOI: 10.3390/ani11123422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Mastitis is a common and important clinical disease in ruminants, resulting in decreased milk production, infertility and delayed conception. If not treated promptly, mastitis may result in fibrotic mastitis. Although epithelial–mesenchymal transition (EMT) is a typical characteristic of fibrotic diseases, the relationship between EMT and mastitis remains largely unknown. NF-κB and Snail are key regulators of the EMT. In the present study, we found that lipopolysaccharide (LPS) induced EMT in primary goat mammary epithelial cells (GMECs). Additionally, the expression of Snail was induced by LPS and was inhibited by the suppression of the TLR4/NF-κB signaling pathway. The knockdown of Snail alleviated LPS-induced EMT and altered the expression of inflammatory cytokines. Finally, we found that the expression of key molecules of the TLR4/NF-κB/Snail signaling pathway was increased in mastitic tissues. This study provides evidence that LPS induces EMT in GMECs through the TLR4/NF-κB/Snail signaling pathway and lays a theoretical foundation for further exploration of the pathological mechanism and treatment of mastitis. Abstract Mastitis is a common and important clinical disease in ruminants. This may be associated with inflammatory fibrosis if not treated promptly. Inflammation-derived fibrosis is usually accompanied by epithelial–mesenchymal transition (EMT) in epithelial cells. However, the precise molecular mechanism underlying mastitis-induced fibrosis remains unclear. Nuclear factor kappa-B (NF-κB) and Snail are key regulators of EMT. In this study, primary goat mammary epithelial cells (GMECs) were treated with 10 μg/mL lipopolysaccharide (LPS) for 14 d to mimic the in vivo mastitis environment. After LPS treatment, the GMECs underwent mesenchymal morphological transformation and expressed mesenchymal cell markers. Snail expression was induced by LPS and was inhibited by suppression of the TLR4/NF-κB signaling pathway. Snail knockdown alleviated LPS-induced EMT and altered the expression of inflammatory cytokines. Finally, we found that the expression of key molecules of the TLR4/NF-κB/Snail signaling pathway was increased in mastitis tissues. These results suggest that Snail plays a vital role in LPS-induced EMT in GMECs and that the mechanism is dependent on the activation of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Haokun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (H.L.); (Y.Z.); (Y.W.); (Y.Y.); (X.Z.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ying Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (H.L.); (Y.Z.); (Y.W.); (Y.Y.); (X.Z.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yanfang Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (H.L.); (Y.Z.); (Y.W.); (Y.Y.); (X.Z.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yutong Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (H.L.); (Y.Z.); (Y.W.); (Y.Y.); (X.Z.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (H.L.); (Y.Z.); (Y.W.); (Y.Y.); (X.Z.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (H.L.); (Y.Z.); (Y.W.); (Y.Y.); (X.Z.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (Q.W.); (B.M.)
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (H.L.); (Y.Z.); (Y.W.); (Y.Y.); (X.Z.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (Q.W.); (B.M.)
| |
Collapse
|