1
|
Li Y, He M, Ran H, Wu J, Lv J, Liu G, Wang Y, Jiang Z. ZnO NPs protect boar sperm in liquid storage through increasing the phosphorylation of PKAs. Anim Reprod 2025; 22:e20240025. [PMID: 40276358 PMCID: PMC12020797 DOI: 10.1590/1984-3143-ar2024-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 01/26/2025] [Indexed: 04/26/2025] Open
Abstract
It remains a problem to efficiently improve the boar sperm quality of liquid storage due to reactive oxygen species (ROS) accumulation. To reduce the effects of ROS on boar sperm, in this study, 1 μg/mL zinc oxide nanoparticles (ZnO NPs) was added into the extender of boar semen during liquid storage at 4°C and 17°C for 7 days. The finding revealed that sperm motility, viability, plasma membrane integrity (PMI) and acrosome integrity significantly increased when compared with the control group (P ˂ 0.05) Additionally, ZnO NPs significantly increased the levels of adenosine triphosphate (ATP), mitochondrial membrane potential (MMP), and antioxidation abilities (P ˂ 0.05) in boar sperm. Moreover, ZnO NPs could protect boar sperm from oxidative stress (OS) by inhibiting ROS-induced decrease of phosphorylation of PKA substrates (P-PKAs). Together, the current results suggest that ZnO NPs could be used as a novel antioxidant agent for semen preservation, which is helpful in improving the application of assisted reproductive technology in domestic animals.
Collapse
Affiliation(s)
- Yuanyou Li
- Laboratory of Gamete Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Meiling He
- Laboratory of Gamete Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haohan Ran
- Laboratory of Gamete Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Wu
- Laboratory of Gamete Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Lv
- Laboratory of Gamete Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guangyu Liu
- Laboratory of Gamete Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yifan Wang
- Laboratory of Gamete Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhongliang Jiang
- Laboratory of Gamete Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Akhtarshenas B, Kowsar R, Hajian M, Vash NT, Soltani L, Mahdavi AH, Esfahani MHN. ρ-Coumaric acid-zinc oxide nanoparticles improve post-thaw quality of goat spermatozoa and developmental competence of fertilized oocytes in vitro. Sci Rep 2024; 14:31971. [PMID: 39738447 PMCID: PMC11686304 DOI: 10.1038/s41598-024-83585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Excessive production of reactive oxygen species (ROS) during cryopreservation and post-thawing affects sperm quality and subsequent fertilizing capacity. Nanoparticles (NPs) with antioxidative properties can improve sperm function and male fertility. The aim of this study was to assess the effect of 100 µM ρ-coumaric acid (ρ-CA), 0.1 µM ρ-CA-NPs (PCNPs), 150 µg/mL zinc chloride (ZnCl2), 1 µg/mL zinc oxide-NPs (ZnO-NPs), ρ-CA + ZnCl2, PCNPs + ZnO-NPs, 0.001 µM of ρ-CA loaded on ZnO-NPs (ρ-CA-ZnONPs) on goat sperm parameters and fertilizing ability after cryopreservation. Semen samples from five Saanen goats were used. Various concentrations of treatments were incubated to determine the optimal concentrations for assessing sperm motility and viability. Subsequently, samples were filled with 0.5-mL straws, frozen, and stored in liquid nitrogen (- 196 °C). Evaluations of post-thaw spermatozoa parameters and fertilizing ability were performed. Addition of ρ-CA-ZnONPs and PCNPs + ZnO-NPs significantly increased sperm viability, motility, plasma membrane integrity, blastocyst rate, and blastocyst quality compared with the other treatments. Moreover, using ρ-CA-ZnONPs significantly decreased lipid peroxidation and DNA damage compared with the other treatments. In conclusion, spermatozoa are cryotolerant, resistant to post-thaw conditions, and have fertilizing ability that can be increased by adding ρ-CA-ZnONPs as an antioxidant to goat semen extenders.
Collapse
Affiliation(s)
- Bahareh Akhtarshenas
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Nima Tanhaei Vash
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
3
|
Omidi F, Hajarian H, Karamishabankareh H, Soltani L, Dashtizad M. Comparison of the Effect of Adding Different Levels of Zinc Chloride, Curcumin, Zinc Oxide Nanoparticles (Zano-NPs), Curcumin Loaded on Zano-NPs on Post-Thawing Quality of Ram Semen. Vet Med Sci 2024; 10:e70091. [PMID: 39495034 PMCID: PMC11533303 DOI: 10.1002/vms3.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE This study looked at how different concentrations of curcumin (Curc), zinc chloride (ZnCl2), zinc oxide nanoparticles (ZnO-NPs) and Curc loaded on ZnO-NPs (Curc-co-ZnO-NPs) in cryopreservation dilution affected the quality of ram sperm after thawing. METHODS ZnO-NPs were synthesised using Berberis vulgaris leaf aqueous extract. Then, Curc was loaded on the ZnO-NPs that had been synthesised. We used analytical methods to look at the composition, morphology and size of green synthesised ZnO-NPs and Curc-co-ZnO-NPs, including UV-Vis, zeta potential, EDX, DLS, FE-SEM and FT-IR. Using a Tris-base extender containing various concentrations of Curc, ZnCl2, ZnO-NPs and Curc-co-ZnO-NPs (0, 1, 10 and 100 µg/mL), semen samples from four rams were combined. Sperm motility, viability, DNA and plasma membrane integrity, total abnormalities and malondialdehyde (MDA) generation were all evaluated in treatment groups after thawing. RESULTS The results showed that adding 1 µg/mL of ZnO-NPs and Curc-co-ZnO-NPs significantly reduced the level of MDA and total abnormalities (p < 0.05). Additionally, following the freeze-thawing procedure, the presence of 1 µg/mL of Curc-co-ZnO-NPs in the diluent of ram sperm significantly increased the percentage of sperm viability and motility in comparison to the control and other treatment groups (p < 0.05). Furthermore, as compared to the control group and other treatments, treatments containing 1 µg/mL of Curc-co-ZnO-NPs significantly improved membrane and DNA integrity (p < 0.05). CONCLUSIONS It appears that following freeze-thawing, the Curc-co-ZnO-NPs (1 µg/mL) enhanced sperm parameters.
Collapse
Affiliation(s)
- Fatemeh Omidi
- Department of Animal ScienceFaculty of Agricultural and Engineering ScienceRazi UniversityKermanshahIran
| | - Hadi Hajarian
- Department of Animal ScienceFaculty of Agricultural and Engineering ScienceRazi UniversityKermanshahIran
| | - Hamed Karamishabankareh
- Department of Animal ScienceFaculty of Agricultural and Engineering ScienceRazi UniversityKermanshahIran
| | - Leila Soltani
- Department of Animal ScienceFaculty of Agricultural and Engineering ScienceRazi UniversityKermanshahIran
| | - Mojtaba Dashtizad
- Department of Animal ScienceNational Institute of Genetics and BiotechnologyTehranIran
| |
Collapse
|
4
|
Piri M, Mahdavi AH, Hajian M, Nasr-Esfahani MH, Soltani L, Vash NT. Effects of nano-berberine and berberine loaded on green synthesized selenium nanoparticles on cryopreservation and in vitro fertilization of goat sperm. Sci Rep 2024; 14:24171. [PMID: 39406889 PMCID: PMC11480442 DOI: 10.1038/s41598-024-75792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
After cryopreservation, reactive oxygen species (ROS) can damage sperm. Antioxidants are the primary defense against oxidative damage. Berberine is a bioactive alkaloid found in Berberis vulgaris, Curcuma longa, and Ergon grape, and is a potent antioxidant. Due to the negative effects of free radicals in oxidative stress processes, antioxidant chemicals are required to protect sperm. However, berberine has low bioavailability, making it less effective. Loading techniques on nanoparticles and nanotechnology can help overcome this limitation. Selenium nanoparticles were synthesized with barberry extract, and berberine was loaded on them. Berberine nanoparticles were then synthesized using anti-solvent precipitation with a syringe pump technique. The synthesis of nanoparticles was confirmed by EDX, UV-visible, FE-SEM, Zeta-Potential, and FTIR tests. In this experiment, we aim to investigate the impact of nano-berberine and berberine loaded on Se-NPs on goat sperm parameters after freeze-thawing. We assessed the generation of reactive oxygen species (ROS), in vitro fertility, and the subsequent embryo development of zygote with treated sperm after determining the optimal concentration of various chemicals on sperm parameters. The study found that all treatments had significant differences from the control group in terms of motility, viability, DNA and membrane integrity, ROS level, lipid peroxidation, in vitro fertility ability, and the capacity to develop inseminated oocytes (p < 0.05). The most significant outcomes were observed with berberine loaded on Se-NPs and the combination of selenium nanoparticles with berberine nanoparticles.
Collapse
Affiliation(s)
- Mehrangiz Piri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Nima Tanhaei Vash
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
5
|
Pan L, Cai J, Liu L, Liu Z, Chen K, Gao P, Jiang X, Ren J. Ambient air pollution decreased normal fertilization rate via the mediation of seminal prosaposin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116713. [PMID: 39002374 DOI: 10.1016/j.ecoenv.2024.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVE This study focuses on the association between seminal concentration of prosaposin and ambient air pollutants and whether the association affects the normal fertilization rate in vitro fertilization (IVF) treatment. METHODS The cohort of 323 couple participants aged 22-46 was recruited from Jan. 2013 to Jun. 2018. At enrollment, resident address information was obtained and semen parameters of male counterparts were evaluated according to WHO criteria. We used inverse distance weighting interpolation to estimate the levels of ambient pollutants (SO2, O3, CO, NO2, PM2.5, and PM10) in the surrounding area. The exposure of each participant was estimated based on the data gathered from air quality monitoring stations and their home address over various periods (0-9, 10-14, and 0-90 days) before semen sampling. The generalized linear regression model (GLM) and the Bayesian kernel machine regression (BKMR) were used to analyze the associations between pollutants, semen parameters, prosaposin, and normal fertilization. Additionally, the mediating effect of prosaposin and semen parameters on the link between pollutants and normal fertilization was investigated. RESULTS GLM and BKMR showed exposure to ambient air pollutants was all associated with the concentration of seminal prosaposin, among them, O3 and CO were also associated with normal fertilization (-0.10, 95 %CI: -0.13, -0.06; -26.43, 95 %CI: -33.79, -19.07). Among the semen parameters, only the concentration of prosaposin and total motile sperm count (TMC) was associated with normal fertilization (0.059, 95 %CI: 0.047, 0.071; 0.016, 95 %CI: 0.012, 0.020). Mediation analysis showed that prosaposin played a stronger mediating role than TMC in the relationship between short-term exposure to O3 and fertilization (66.83 %, P<0.001 versus 3.05 %, P>0.05). CONCLUSION Seminal plasma prosaposin showed a stronger meditating effect reflect the correlation between ambient air pollutants and normal fertilization rate than conventional semen parameters, which may be used as one of the indicators between pollution and fertilization in IVF.
Collapse
Affiliation(s)
- Luxiang Pan
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, Fujian, China
| | - Jiali Cai
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lanlan Liu
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, Fujian, China
| | - Zhenfang Liu
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, Fujian, China
| | - Kaijie Chen
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, Fujian, China
| | - Peng Gao
- Medical Quality Management Department, Xiamen University Affiliated Chenggong Hospital, Xiamen, Fujian, China
| | - Xiaoming Jiang
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, Fujian, China.
| | - Jianzhi Ren
- Reproductive Medicine Center, Xiamen University Affiliated Chenggong Hospital, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Soltani L, Ghaneialvar H, Mahdavi AH. An overview of the role of metallic and nonmetallic nanoparticles and their salts during sperm cryopreservation and in vitro embryo manipulation. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:262-279. [PMID: 36120977 DOI: 10.1080/15257770.2022.2124269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The cryopreservation of spermatozoa and the in vitro embryo production are valuable tools used in a variety of species, including humans, livestock, fish, and aquatic invertebrates. Sperm cryopreservation has been used to maintain or increase the genetic diversity of threatened species. Reactive oxygen species (ROS) are molecules derived from oxygen, being formed as byproducts of cellular metabolism. During cryopreservation of sperm and other in vitro manipulations of oocytes and embryos, ROS production is dramatically increased. In cells, low, medium, and high levels of ROS lead to different outcomes, apoptosis, auto-phagocytosis, and necrosis, respectively. ROS produced by cells can be neutralized by intracellular antioxidant systems, including enzymes as well as non-enzymatic antioxidants. Free radicals and oxidative stress can be major factors influencing in vitro manipulations. In this review, we discuss the role that metallic and nonmetallic nanoparticles and their salts play in the modulation of oxidative stress during in vitro embryo production and cryopreservation of sperm.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
7
|
Bisla A, Honparkhe M, Srivastava N. A review on applications and toxicities of metallic nanoparticles in mammalian semen biology. Andrologia 2022; 54:e14589. [DOI: 10.1111/and.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Amarjeet Bisla
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mrigank Honparkhe
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Neeraj Srivastava
- Germ Plasm Centre, Division of Animal Reproduction ICAR‐Indian Veterinary Research Institute Bareilly India
| |
Collapse
|
8
|
Dianová L, Tirpák F, Halo M, Slanina T, Massányi M, Stawarz R, Formicki G, Madeddu R, Massányi P. Effects of Selected Metal Nanoparticles (Ag, ZnO, TiO 2) on the Structure and Function of Reproductive Organs. TOXICS 2022; 10:toxics10080459. [PMID: 36006138 PMCID: PMC9415992 DOI: 10.3390/toxics10080459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/03/2023]
Abstract
Various studies have shown that the reproductive organs are highly sensitive to toxic elements found in the environment. Due to technological progress, the use of nanoparticles has become more common nowadays. Nanoparticles are used for drug delivery because their dimensions allow them to circulate throughout the body and enter directly into the cell. Antimicrobial properties are increasingly used in the manufacture of medical devices, textiles, food packaging, cosmetics, and other consumer products. Nanoparticles provide several benefits, but aspects related to their effects on living organisms and the environment are not well known. This review summarizes current in vivo, and in vitro animal studies focused on the evaluation of toxicity of selected metal nanoparticles (Ag, ZnO, TiO2) on male and female reproductive health. It can be concluded that higher concentrations of metal nanoparticles in the male reproductive system can cause a decrease in spermatozoa motility, viability and disruption of membrane integrity. Histopathological changes of the testicular epithelium, infiltration of inflammatory cells in the epididymis, and prostatic hyperplasia have been observed. Nanoparticles in the female reproductive system caused their accumulation in the ovaries and uterus. Metal nanoparticles most likely induce polycystic ovary syndrome and follicular atresia, inflammation, apoptosis, and necrosis also occurred.
Collapse
Affiliation(s)
- Lucia Dianová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
- Correspondence:
| | - Filip Tirpák
- Research Centre AgroBioTech, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Marko Halo
- Research Centre AgroBioTech, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Tomáš Slanina
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Martin Massányi
- Research Centre AgroBioTech, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Robert Stawarz
- Institute of Biology, Pedagogical University of Kraków, ul. Podchorążych 2, 30-084 Kraków, Poland
| | - Grzegorz Formicki
- Institute of Biology, Pedagogical University of Kraków, ul. Podchorążych 2, 30-084 Kraków, Poland
| | - Roberto Madeddu
- Department of Biomedical Sciences-Histology, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Peter Massányi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
- Institute of Biology, Pedagogical University of Kraków, ul. Podchorążych 2, 30-084 Kraków, Poland
| |
Collapse
|