1
|
Pardessus Otero A, Rafecas-Codern A, Porcel JM, Serra-Mitjà P, Ferreiro L, Botana-Rial M, Ramos-Hernández C, Brenes JM, Canales L, Camacho V, Romero-Romero B, Trujillo JC, Martinez E, Cases E, Barba A, Majem M, Güell E, Pajares V. Malignant Pleural Effusion: A Multidisciplinary Approach. OPEN RESPIRATORY ARCHIVES 2024; 6:100349. [PMID: 39091982 PMCID: PMC11293617 DOI: 10.1016/j.opresp.2024.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Malignant pleural effusion (MPE) has become an increasingly prevalent complication in oncological patients, negatively impacting their quality of life and casting a shadow over their prognosis. Owing to the pathophysiological mechanisms involved and the heterogeneous nature of the underlying disease, this entity is both a diagnostic and therapeutic challenge. Advances in the understanding of MPE have led to a shift in the treatment paradigm towards a more personalized approach. This article provides a comprehensive review and update on the pathophysiology of MPE and describes the diagnostic tools and the latest advances in the treatment of this complex clinical entity.
Collapse
Affiliation(s)
- Ana Pardessus Otero
- Interventional Pulmonology, Respiratory Medicine Department, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma Barcelona (UAB), Barcelona, Spain
| | - Albert Rafecas-Codern
- Interventional Pulmonology, Respiratory Medicine Department, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma Barcelona (UAB), Barcelona, Spain
- Chronic Respiratory Disease Group (GREC), Institut de Recerca Sant Pau (IR SANT PAU), Spain
| | - José M. Porcel
- Pleural Medicine Unit, Department of Internal Medicine, Arnau de Vilanova University Hospital, IRBLleida, University of Lleida, Lleida, Spain
| | - Pere Serra-Mitjà
- Interventional Pulmonology, Respiratory Medicine Department, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma Barcelona (UAB), Barcelona, Spain
| | - Lucía Ferreiro
- Pulmonology Department, University Clinical Hospital of Santiago, Interdisciplinary Research Group in Pulmonology, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Maribel Botana-Rial
- Broncopleural Unit, Pulmonary Deparment, Hospital Álvaro Cunqueiro, EOXI Vigo, PneumoVigoI+i Research Group, Sanitary Research Institute Galicia Sur (IISGS), Vigo, Spain
- CIBER de Enfermedades Respiratorias, Spain
| | - Cristina Ramos-Hernández
- Pulmonary Deparment, Hospital Álvaro Cunqueiro, EOXI Vigo, PneumoVigoI+i Research Group, Sanitary Research Institute Galicia Sur (IISGS), Vigo, Spain
| | - José Manuel Brenes
- Radiology Department, Hospital Santa Creu i Sant Pau, Universitat Autónoma Barcelona (UAB), Barcelona, Spain
| | - Lydia Canales
- Radiology Department, Hospital Santa Creu i Sant Pau, Universitat Autónoma Barcelona (UAB), Barcelona, Spain
| | - Valle Camacho
- Nuclear Medicine Department, Hospital Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Juan Carlos Trujillo
- Department of Thoracic Surgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Elisabeth Martinez
- Department of Thoracic Surgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Enrique Cases
- Interventional Pulmonology, Hospital Universitario Politécnico La Fe, Valencia, Spain
| | - Andrés Barba
- Medical Oncology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Margarita Majem
- Medical Oncology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Ernest Güell
- Palliative Care Unit, Oncology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma Barcelona (UAB), Barcelona, Spain
| | - Virginia Pajares
- Interventional Pulmonology, Respiratory Medicine Department, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma Barcelona (UAB), Barcelona, Spain
- Chronic Respiratory Disease Group (GREC), Institut de Recerca Sant Pau (IR SANT PAU), Spain
| |
Collapse
|
2
|
Iglesias Heras M, Juárez Moreno E, Ortiz de Saracho Bobo J, Cascón Hernández J, Fernández García-Hierro JM, Yagüe Zapatero E, Cordovilla Pérez R. Usefulness of thoracic ultrasound in the assessment of removal of indwelling pleural catheter in patients with malignant pleural effusion. RADIOLOGIA 2024; 66 Suppl 1:S24-S31. [PMID: 38642957 DOI: 10.1016/j.rxeng.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/20/2023] [Indexed: 04/22/2024]
Abstract
INTRODUCTION There are no defined criteria for deciding to remove a non-functioning indwelling pleural catheter (IPC) when lung re-expansion on chest X-ray is incomplete. Chest computed tomography (chest CT) is usually used. The objective of this work is to validate the usefulness of chest ultrasound performed by a pulmonologist and by a radiologist compared to chest CT. PATIENTS AND METHODS Prospective, descriptive, multidisciplinary and multicenter study including patients with malignant pleural effusion and non-functioning IPC without lung reexpansion. Decisions made on the basis of chest ultrasound performed by a pulmonologist, and performed by a radiologist, were compared with chest CT as the gold standard. RESULTS 18 patients were analyzed, all of them underwent ultrasound by a pulmonologist and chest CT and in 11 of them also ultrasound by a radiologist. The ultrasound performed by the pulmonologist presents a sensitivity of 60%, specificity of 100%, PPV 100% and NPV 66% in the decision of the correct removal of the IPC. The concordance of both ultrasounds (pulmonologist and radiologist) was 100%, with a kappa index of 1. The 4 discordant cases were those in which the IPC was not located on the ultrasound. CONCLUSIONS Thoracic ultrasound performed by an expert pulmonologist is a valid and simple tool to determine spontaneous pleurodesis and remove a non-functioning IPC, which would make it possible to avoid chest CT in those cases in which lung reexpansion is observed with ultrasonography.
Collapse
Affiliation(s)
- M Iglesias Heras
- Servicio de Neumología, Hospital Universitario de Salamanca, Salamanca. Spain.
| | - E Juárez Moreno
- Servicio de Neumología, Hospital El Bierzo, Ponferrada, León, Spain
| | | | - J Cascón Hernández
- Servicio de Neumología, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | | | - E Yagüe Zapatero
- Servicio de Radiodiagnóstico, Hospital El Bierzo, Ponferrada, León, Spain
| | - R Cordovilla Pérez
- Servicio de Neumología, Hospital Universitario de Salamanca, Salamanca. Spain
| |
Collapse
|
3
|
Wei Q, Deng T, Wu J, Zeng H, Qi C, Tan S, Zhang Y, Huang Q, Pu X, Xu W, Li W, Tian P, Li Y. Immune checkpoint inhibitor plus chemotherapy as first-line treatment for non-small cell lung cancer with malignant pleural effusion: a retrospective multicenter study. BMC Cancer 2024; 24:393. [PMID: 38549044 PMCID: PMC10976680 DOI: 10.1186/s12885-024-12173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/22/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) combined with chemotherapy are efficacious for treating advanced non-small cell lung cancer (NSCLC); however, the effectiveness of this approach in the malignant pleural effusion (MPE) population is unclear. This study evaluated ICI plus chemotherapy in NSCLC patients with MPE. METHODS Patients from 3 centers in China with NSCLC and MPE who received ICI plus chemotherapy (ICI Plus Chemo) or chemotherapy alone (Chemo) between December 2014 and June 2023 were enrolled. Clinical outcomes and adverse events (AEs) were compared. RESULTS Of 155 eligible patients, the median age was 61.0 years old. Males and never-smokers accounted for 73.5% and 39.4%, respectively. Fifty-seven and 98 patients received ICI Plus Chemo or Chemo, respectively. With a median study follow-up of 10.8 months, progression-free survival (PFS) was significantly longer with ICI Plus Chemo than with Chemo (median PFS: 7.4 versus 5.7 months; HR = 0.594 [95% CI: 0.403-0.874], P = 0.008). Median overall survival (OS) did not differ between groups (ICI Plus Chemo: 34.2 versus Chemo: 28.3 months; HR = 0.746 [95% CI: 0.420-1.325], P = 0.317). The most common grade 3 or worse AEs included decreased neutrophil count (3 [5.3%] patients in the ICI Plus Chemo group vs. 5 [5.1%] patients in the Chemo group) and decreased hemoglobin (3 [5.3%] versus 10 [10.2%]). CONCLUSIONS In patients with untreated NSCLC with MPE, ICI plus chemotherapy resulted in significantly longer PFS than chemotherapy and had a manageable tolerability profile, but the effect on OS may be limited.
Collapse
Affiliation(s)
- Qi Wei
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Taibing Deng
- Pulmonary and Critical Care Medicine, Guang 'an People's Hospital, Guang 'an, China
| | - Junhua Wu
- Respiratory and Critical Care Medicine, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China
| | - Hao Zeng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chang Qi
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sihan Tan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qin Huang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Pu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiguo Xu
- Respiratory and Critical Care Medicine, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Zeng H, Zhang Y, Tan S, Huang Q, Pu X, Tian P, Li Y. Efficacy of bevacizumab through an indwelling pleural catheter in non-small cell lung cancer patients with symptomatic malignant pleural effusion. BMC Pulm Med 2024; 24:89. [PMID: 38365707 PMCID: PMC10874116 DOI: 10.1186/s12890-024-02886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Several studies have indicated that intrapleural infusion of bevacizumab is an effective treatment for non-small cell lung cancer (NSCLC) with malignant pleural effusion (MPE). However, the impact of bevacizumab administered through an indwelling pleural catheter (IPC) on the prognosis of these patients is unknown. METHODS Consecutive advanced NSCLC patients with symptomatic MPE receiving an IPC alone or bevacizumab through an IPC were identified in a tertiary hospital. The patient characteristics and clinical outcomes were collected. RESULTS A total of 149 patients were included, and the median age was 60.3 years. Males and nonsmokers accounted for 48.3% and 65.8%, respectively. A total of 69.8% (104/149) of patients harbored actionable mutations, including 92 EGFR-activating mutations, 11 ALK fusions, and 1 ROS1 fusion. A total of 81.9% (122/149) of patients received IPC alone, and 18.1% (27/149) received bevacizumab through an IPC. The incidence of spontaneous pleurodesis during the first 6 months was greater in the bevacizumab-treated group than in the IPC-treated group in the subgroup with actionable mutations (64.3% vs. 46.9%, P = 0.28). The median overall survival (OS) in patients with actionable mutations treated with bevacizumab through an IPC was 42.2 months, which was significantly longer than the 26.7 months in patients who received an IPC alone (P = 0.045). However, the median OS did not differ between the two arms in the subgroup without actionable mutations (10.8 vs. 41.0 months, P = 0.24). No significant difference between the bevacizumab through an IPC group and the IPC group was detected in the number of participants who had adverse events, either in patients with actionable mutations (14.3% vs. 8.4%; P = 0.42) or in patients without actionable mutations (16.7% vs. 12.8%; P = 1.00). CONCLUSIONS Bevacizumab through an IPC resulted in a significantly improved prognosis for NSCLC patients with MPE and actionable mutations. However, patients without actionable mutations do not benefit from bevacizumab through IPC.
Collapse
Affiliation(s)
- Hao Zeng
- Lung Cancer Center/Lung Cancer Institute, West China Hospital , Sichuan University, No. 37 GuoXue Alley, 610041, Chengdu, Sichuan Province, China
| | - Yuanyuan Zhang
- Lung Cancer Center/Lung Cancer Institute, West China Hospital , Sichuan University, No. 37 GuoXue Alley, 610041, Chengdu, Sichuan Province, China
| | - Sihan Tan
- Lung Cancer Center/Lung Cancer Institute, West China Hospital , Sichuan University, No. 37 GuoXue Alley, 610041, Chengdu, Sichuan Province, China
| | - Qin Huang
- Lung Cancer Center/Lung Cancer Institute, West China Hospital , Sichuan University, No. 37 GuoXue Alley, 610041, Chengdu, Sichuan Province, China
| | - Xin Pu
- Lung Cancer Center/Lung Cancer Institute, West China Hospital , Sichuan University, No. 37 GuoXue Alley, 610041, Chengdu, Sichuan Province, China
| | - Panwen Tian
- Lung Cancer Center/Lung Cancer Institute, West China Hospital , Sichuan University, No. 37 GuoXue Alley, 610041, Chengdu, Sichuan Province, China.
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| | - Yalun Li
- Lung Cancer Center/Lung Cancer Institute, West China Hospital , Sichuan University, No. 37 GuoXue Alley, 610041, Chengdu, Sichuan Province, China.
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Chaddha U, Porcel JM, Murgu SD. Indwelling pleural catheters or chest drains for managing malignant pleural effusions: a distinction without a difference? Eur Respir J 2024; 63:2302268. [PMID: 38331440 DOI: 10.1183/13993003.02268-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024]
Affiliation(s)
- Udit Chaddha
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - José M Porcel
- Pleural Medicine and Clinical Ultrasound Unit, Department of Internal Medicine, Arnau de Vilanova University Hospital, IRBLLEIDA, Lleida, Spain
| | | |
Collapse
|
6
|
Agmy G, Adam MF, El Sagheir SA, Mahmoud MA. Transthoracic sonographic scores in evaluating the success of different scelerosing modalities in patients with malignant pleural effusion. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2022. [DOI: 10.1186/s43168-022-00169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Malignant pleural effusions (MPE) mostly arises from metastases to the pleura from other sites. Management of malignant effusions aims to palliate dyspnea and prevent the reaccumulation of pleural fluid to improve patients’ quality of life. Pleurodesis is the most common palliative treatment for patients with refractory MPE. This study was carried out to evaluate the performance of transthoracic sonographic (TUS) scores (pleural sliding and pleural adherence score) in predicting the success of pleurodesis by different modalities in patients with malignant pleural effusion. One hundred malignant pleural effusion patients were enrolled to an interventional clinical trial from September 2019 to April 2021 for palliative management of dyspnea. Pleurodesis for palliative treatment of dyspnea was done either spontaneously by the intercostal chest tube or by a sclerosing agent such as tetracycline solution or tetracycline poudrage or iodopovidine. Patients were randomly allocated to one of these four groups where each group included 25 patients. Transthoracic ultrasound was performed at baseline, and 1 month after pleurodesis and the lung sliding score and pleural adherence score were evaluated.
Results
Majority of patients (78%) had high baseline lung sliding score (7-8). Post pleurodesis only 11.4% had high scores (p<0.001), also the mean lung sliding score decreased significantly in comparison to the baseline values (p˂ 0.001) in the spontaneous, tetracycline solution, tetracycline poudrage, and iodopovidine groups (7.04 ± 1.02 vs. 4.85 ± 1.60, 7.28± 0.98 vs. 4.48± 1.75, 7.20±0.96 vs. 4.44 ± 1.45, 7.04±0.93 vs. 3.35±1.81, respectively). Iodopovidine pleurodesis group in comparison to the other modalities showed the highest pleural adherence score (12.64 ± 2.98) and absent lung sliding in 72.7% of cases and 70 % success rate. Pleural adherence score at cut off ≥ 12 showed 92.75% sensitivity, 89.47% specificity, 92.1 accuracy, and 0.911 area under the curve (AUC) for predicting successful pleurodesis.
Conclusion
TUS scores is a feasible, bedside, and accurate method to detect the outcome of pleurodesis. Iodopovidone was more effective than tetracycline solution, tetracycline poudrage, and spontaneous pleurodesis.
Trial registration
ClinicalTrials.gov. NCT04074902. Registered on 29 August 2019
Collapse
|
7
|
Baltaji S, Shojaee S. Indwelling Pleural Catheters for Refractory Hepatic Hydrothorax? A Call for Prospective Studies and Randomized Controlled Trials. J Bronchology Interv Pulmonol 2022; 29:161-163. [PMID: 35730776 DOI: 10.1097/lbr.0000000000000851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Stephanie Baltaji
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Allegheny Health Network, Pittsburg, PA
| | - Samira Shojaee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA
| |
Collapse
|
8
|
Update on the diagnosis and management of malignant pleural effusions. Respir Med 2022; 196:106802. [DOI: 10.1016/j.rmed.2022.106802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
|
9
|
Foo CT, Pulimood T, Knolle M, Marciniak SJ, Herre J. Ambulatory Thoracoscopic Pleurodesis Combined With Indwelling Pleural Catheter in Malignant Pleural Effusion. Front Surg 2021; 8:738719. [PMID: 34760917 PMCID: PMC8572984 DOI: 10.3389/fsurg.2021.738719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: Malignant pleural effusion (MPE) often results in debilitating symptoms. Relief of dyspnoea and improvement in quality of life can be achieved with either talc pleurodesis or insertion of an indwelling tunneled pleural catheter (IPC). The former requires a lengthy hospital stay and the latter is associated with lower pleurodesis rates. In response to limited hospital bed capacity, we developed a pragmatic approach in managing MPE by combining thoracoscopic talc poudrage and insertion of IPC into a single day case procedure. We present data on the safety and efficacy of this approach. Methods: Patients who had undergone the abovementioned procedure between 2017 and 2020 were analyzed. Demographic data, hospital length of stay (LOS), histological diagnosis, rates of pleurodesis success and procedural related complications were collated. Patients were followed-up for 6 months. Results: Forty-five patients underwent the procedure. Mean age was 68.5 ± 10.4 years and 56% were male. Histological diagnosis was achieved in all cases. 86.7% of patients were discharged on the day of the procedure. Median LOS was 0 (IQR 0–0) days. Successful pleurodesis was attained in 77.8% at 6-month follow-up. No procedure related deaths or IPC related infections were recorded. Conclusion: Ambulatory thoracoscopic poudrage and IPC insertion is a safe and effective option in the management of MPE. All patients received a definitive pleural intervention with 77.8% pleurodesis success at 6-months and majority of them discharged on the same day. Future randomized trials are required to confirm these findings.
Collapse
Affiliation(s)
- Chuan T Foo
- Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Thomas Pulimood
- Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Martin Knolle
- Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Stefan J Marciniak
- Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Jurgen Herre
- Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
10
|
Psallidas I, Hassan M, Yousuf A, Duncan T, Khan SL, Blyth KG, Evison M, Corcoran JP, Barnes S, Reddy R, Bonta PI, Bhatnagar R, Kagithala G, Dobson M, Knight R, Dutton SJ, Luengo-Fernandez R, Hedley E, Piotrowska H, Brown L, Asa'ari KAM, Mercer RM, Asciak R, Bedawi EO, Hallifax RJ, Slade M, Benamore R, Edey A, Miller RF, Maskell NA, Rahman NM. Role of thoracic ultrasonography in pleurodesis pathways for malignant pleural effusions (SIMPLE): an open-label, randomised controlled trial. THE LANCET RESPIRATORY MEDICINE 2021; 10:139-148. [PMID: 34634246 DOI: 10.1016/s2213-2600(21)00353-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Pleurodesis is done as an in-patient procedure to control symptomatic recurrent malignant pleural effusion (MPE) and has a success rate of 75-80%. Thoracic ultrasonography has been shown in a small study to predict pleurodesis success early by demonstrating cessation of lung sliding (a normal sign seen in healthy patients, lung sliding indicates normal movement of the lung inside the thorax). We aimed to investigate whether the use of thoracic ultrasonography in pleurodesis pathways could shorten hospital stay in patients with MPE undergoing pleurodesis. METHODS The Efficacy of Sonographic and Biological Pleurodesis Indicators of Malignant Pleural Effusion (SIMPLE) trial was an open-label, randomised controlled trial done in ten respiratory centres in the UK and one respiratory centre in the Netherlands. Adult patients (aged ≥18 years) with confirmed MPE who required talc pleurodesis via either a chest tube or as poudrage during medical thorascopy were eligible. Patients were randomly assigned (1:1) to thoracic ultrasonography-guided care or standard care via an online platform using a minimisation algorithm. In the intervention group, daily thoracic ultrasonography examination for lung sliding in nine regions was done to derive an adherence score: present (1 point), questionable (2 points), or absent (3 points), with a lowest possible score of 9 (preserved sliding) and a highest possible score of 27 (complete absence of sliding); the chest tube was removed if the score was more than 20. In the standard care group, tube removal was based on daily output volume (per British Thoracic Society Guidelines). The primary outcome was length of hospital stay, and secondary outcomes were pleurodesis failure at 3 months, time to tube removal, all-cause mortality, symptoms and quality-of-life scores, and cost-effectiveness of thoracic ultrasonography-guided care. All outcomes were assessed in the modified intention-to-treat population (patients with missing data excluded), and a non-inferiority analysis of pleurodesis failure was done in the per-protocol population. This trial was registered with ISRCTN, ISRCTN16441661. FINDINGS Between Dec 31, 2015, and Dec 17, 2019, 778 patients were assessed for eligibility and 313 participants (165 [53%] male) were recruited and randomly assigned to thoracic ultrasonography-guided care (n=159) or standard care (n=154). In the modified intention-to-treat population, the median length of hospital stay was significantly shorter in the intervention group (2 days [IQR 2-4]) than in the standard care group (3 days [2-5]; difference 1 day [95% CI 1-1]; p<0·0001). In the per-protocol analysis, thoracic ultrasonography-guided care was non-inferior to standard care in terms of pleurodesis failure at 3 months, which occurred in 27 (29·7%) of 91 patients in the intervention group versus 34 (31·2%) of 109 patients in the standard care group (risk difference -1·5% [95% CI -10·2% to 7·2%]; non-inferiority margin 15%). Mean time to chest tube removal in the intervention group was 2·4 days (SD 2·5) versus 3·1 days (2·0) in the standard care group (mean difference -0·72 days [95% CI -1·22 to -0·21]; p=0·0057). There were no significant between-group differences in all-cause mortality, symptom scores, or quality-of-life scores, except on the EQ-5D visual analogue scale, which was significantly lower in the standard care group at 3 months. Although costs were similar between the groups, thoracic ultrasonography-guided care was cost-effective compared with standard care. INTERPRETATION Thoracic ultrasonography-guided care for pleurodesis in patients with MPE results in shorter hospital stay (compared with the British Thoracic Society recommendation for pleurodesis) without reducing the success rate of the procedure at 3 months. The data support consideration of standard use of thoracic ultrasonography in patients undergoing MPE-related pleurodesis. FUNDING Marie Curie Cancer Care Committee.
Collapse
Affiliation(s)
- Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Maged Hassan
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK; Chest Diseases Department, Alexandria University Faculty of Medicine, Alexandria, Egypt.
| | - Ahmed Yousuf
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Tracy Duncan
- Department of Respiratory Medicine, North Manchester General Hospital, Manchester, UK
| | - Shahul Leyakathali Khan
- Department of Respiratory Medicine, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK
| | - Kevin G Blyth
- Institute of Cancer Sciences, University of Glasgow and Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Matthew Evison
- North West Lung Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
| | - John P Corcoran
- Interventional Pulmonology Unit, Chest Clinic, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Simon Barnes
- Department of Respiratory Medicine, Somerset NHS Foundation Trust, Taunton, UK
| | - Raja Reddy
- Department of Respiratory Medicine, Kettering General Hospital, Kettering, UK
| | - Peter I Bonta
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Rahul Bhatnagar
- Academic Respiratory Unit, University of Bristol, Bristol, UK
| | | | - Melissa Dobson
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Ruth Knight
- Oxford Clinical Trials Research Unit, Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Susan J Dutton
- Oxford Clinical Trials Research Unit, Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Ramon Luengo-Fernandez
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Emma Hedley
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Hania Piotrowska
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Louise Brown
- Department of Respiratory Medicine, North Manchester General Hospital, Manchester, UK
| | - Kamal Abi Musa Asa'ari
- Department of Respiratory Medicine, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK
| | - Rachel M Mercer
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Rachelle Asciak
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Eihab O Bedawi
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Rob J Hallifax
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Mark Slade
- Department of Respiratory Medicine, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | - Rachel Benamore
- Department of Thoracic Imaging, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anthony Edey
- Department of Imaging, North Bristol NHS Trust, Bristol, UK
| | - Robert F Miller
- Institute for Global Health, University College London, London, UK
| | - Nick A Maskell
- Academic Respiratory Unit, University of Bristol, Bristol, UK
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, Oxford, UK
| |
Collapse
|