1
|
Neumayr TM, Bayrakci B, Chanchlani R, Deep A, Morgan J, Arikan AA, Basu RK, Goldstein SL, Askenazi DJ. Programs and processes for advancing pediatric acute kidney support therapy in hospitalized and critically ill children: a report from the 26th Acute Disease Quality Initiative (ADQI) consensus conference. Pediatr Nephrol 2024; 39:993-1004. [PMID: 37930418 PMCID: PMC10817827 DOI: 10.1007/s00467-023-06186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023]
Abstract
Pediatric acute kidney support therapy (paKST) programs aim to reliably provide safe, effective, and timely extracorporeal supportive care for acutely and critically ill pediatric patients with acute kidney injury (AKI), fluid and electrolyte derangements, and/or toxin accumulation with a goal of improving both hospital-based and lifelong outcomes. Little is known about optimal ways to configure paKST teams and programs, pediatric-specific aspects of delivering high-quality paKST, strategies for transitioning from acute continuous modes of paKST to facilitate rehabilitation, or providing effective short- and long-term follow-up. As part of the 26th Acute Disease Quality Initiative Conference, the first to focus on a pediatric population, we summarize here the current state of knowledge in paKST programs and technology, identify key knowledge gaps in the field, and propose a framework for current best practices and future research in paKST.
Collapse
Affiliation(s)
- Tara M Neumayr
- Department of Pediatrics, Divisions of Pediatric Critical Care Medicine and Pediatric Nephrology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benan Bayrakci
- Department of Pediatric Intensive Care Medicine, The Center for Life Support Practice and Research, Hacettepe University, Ankara, Türkiye
| | - Rahul Chanchlani
- Department of Pediatrics, Division of Pediatric Nephrology, McMaster University, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Akash Deep
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK.
- Pediatric Intensive Care Unit, King's College Hospital NHS Foundation Trust, London, UK.
| | - Jolyn Morgan
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ayse Akcan Arikan
- Department of Pediatrics, Divisions of Critical Care Medicine and Nephrology, Baylor College of Medicine, Houston, TX, USA
| | - Rajit K Basu
- Department of Pediatrics, Division of Critical Care Medicine, Northwestern University Feinberg School of Medicine, Ann & Robert Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Stuart L Goldstein
- Department of Pediatrics, Division of Nephrology & Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David J Askenazi
- Department of Pediatrics, Division of Pediatric Nephrology, Pediatric and Infant Center for Acute Nephrology, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Cullis B, Calice da Silva V, McCulloch M, Ulasi I, Wijewickrama E, Iyengar A. Access to Dialysis for Acute Kidney Injury in Low-Resource Settings. Semin Nephrol 2023; 42:151313. [PMID: 36821914 DOI: 10.1016/j.semnephrol.2023.151313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Acute kidney injury (AKI) is estimated to occur in approximately 13.3 million patients per year with an estimated mortality of 1.7 million. Approximately 85% of cases occur in low-resource settings where access to kidney replacement therapy (KRT) may be limited or nonexistent. The true extent of AKI, including access to KRT in developing countries, is largely unknown because appropriate systems are not in place to detect AKI or report it. Barriers to provision of KRT in low-resource settings revolve around systems management and funding, however, there also are region-specific issues. This review focuses on the epidemiology, obstacles, and solutions to improving access to KRT for AKI.
Collapse
Affiliation(s)
- Brett Cullis
- Department of Paediatrics and Child Health, University of Cape Town, Rondebosch, South Africa; Renal Unit, Hilton Life Hospital, Hilton, South Africa.
| | | | - Mignon McCulloch
- Department of Paediatrics and Child Health, University of Cape Town, Rondebosch, South Africa
| | - Ifeoma Ulasi
- Renal Unit, Department of Medicine, College of Medicine, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | - Eranga Wijewickrama
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Arpana Iyengar
- Department of Pediatric Nephrology, St John's Medical College Hospital, Bangalore, India
| |
Collapse
|
3
|
Mohamed TH, Morgan J, Mottes TA, Askenazi D, Jetton JG, Menon S. Kidney support for babies: building a comprehensive and integrated neonatal kidney support therapy program. Pediatr Nephrol 2022:10.1007/s00467-022-05768-y. [PMID: 36227440 DOI: 10.1007/s00467-022-05768-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022]
Abstract
Kidney support therapy (KST), previously referred to as Renal Replacement Therapy, is utilized to treat children and adults with severe acute kidney injury (AKI), fluid overload, inborn errors of metabolism, and kidney failure. Several forms of KST are available including peritoneal dialysis (PD), intermittent hemodialysis (iHD), and continuous kidney support therapy (CKST). Traditionally, extracorporeal KST (CKST and iHD) in neonates has had unique challenges related to small patient size, lack of neonatal-specific devices, and risk of hemodynamic instability due to large extracorporeal circuit volume relative to patient total blood volume. Thus, PD has been the most commonly used modality in infants, followed by CKST and iHD. In recent years, CKST machines designed for small children and novel filters with smaller extracorporeal circuit volumes have emerged and are being used in many centers to provide neonatal KST for toxin removal and to achieve fluid and electrolyte homeostasis, increasing the options available for this unique and vulnerable group. These new treatment options create a dramatic paradigm shift with recalibration of the benefit: risk equation. Renewed focus on the infrastructure required to deliver neonatal KST safely and effectively is essential, especially in programs/units that do not traditionally provide KST to neonates. Building and implementing a neonatal KST program requires an expert multidisciplinary team with strong institutional support. In this review, we first describe the available neonatal KST modalities including newer neonatal and infant-specific platforms. Then, we describe the steps needed to develop and sustain a neonatal KST team, including recommendations for provider and nursing staff training. Finally, we describe how quality improvement initiatives can be integrated into programs.
Collapse
Affiliation(s)
- Tahagod H Mohamed
- Division of Nephrology and Hypertension, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA.
- The Kidney and Urinary Tract Center, Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 430205, USA.
| | - Jolyn Morgan
- The Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Theresa A Mottes
- Division of Nephrology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - David Askenazi
- Pediatric and Infant Center for Acute Nephrology, Division of Pediatric Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer G Jetton
- Section of Nephrology, Medical College of Wisconsin/Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - Shina Menon
- Division of Pediatric Nephrology, Department of Pediatrics, Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Slagle C, Schuh M, Grisotti G, Riddle S, Reddy P, Claes D, Lim FY, VanderBrink B. In utero renal failure. Semin Pediatr Surg 2022; 31:151195. [PMID: 35725056 DOI: 10.1016/j.sempedsurg.2022.151195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cara Slagle
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7009, United States.
| | - Meredith Schuh
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, United States
| | - Gabriella Grisotti
- Division of Pediatric General and Thoracic Surgery and Center for Fetal Care, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati College of Medicine, United States
| | - Stefanie Riddle
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7009, United States
| | - Pramod Reddy
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati College of Medicine, United States
| | - Donna Claes
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, United States
| | - Foong-Yen Lim
- Division of Pediatric General and Thoracic Surgery and Center for Fetal Care, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati College of Medicine, United States
| | - Brian VanderBrink
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati College of Medicine, United States
| |
Collapse
|
5
|
Slagle C, Gist KM, Starr MC, Hemmelgarn TS, Goldstein SL, Kent AL. Fluid Homeostasis and Diuretic Therapy in the Neonate. Neoreviews 2022; 23:e189-e204. [PMID: 35229135 DOI: 10.1542/neo.23-3-e189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding physiologic water balance and homeostasis mechanisms in the neonate is critical for clinicians in the NICU as pathologic fluid accumulation increases the risk for morbidity and mortality. In addition, once this process occurs, treatment is limited. In this review, we will cover fluid homeostasis in the neonate, explain the implications of prematurity on this process, discuss the complexity of fluid accumulation and the development of fluid overload, identify mitigation strategies, and review treatment options.
Collapse
Affiliation(s)
- Cara Slagle
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, College of Medicine, Cincinnati, OH
| | - Katja M Gist
- Division of Cardiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, College of Medicine, Cincinnati, OH
| | - Michelle C Starr
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine and Riley Hospital for Children, Indianapolis, IN
| | - Trina S Hemmelgarn
- Division of Pharmacology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, College of Pharmacy, Cincinnati, OH
| | - Stuart L Goldstein
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, College of Medicine, Cincinnati, OH
| | - Alison L Kent
- Department of Pediatrics, University of Rochester, NY, and Australian National University Medical School, Canberra, ACT, Australia
| |
Collapse
|