1
|
Jian N, Yu L, Ma L, Zheng B, Huang W. BCG therapy in bladder cancer and its tumor microenvironment interactions. Clin Microbiol Rev 2025:e0021224. [PMID: 40111053 DOI: 10.1128/cmr.00212-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
SUMMARYBacillus Calmette-Guérin (BCG) has been the standard treatment for non-muscle-invasive bladder cancer for over 30 years. Despite its proven efficacy, challenges persist, including unclear mechanisms of action, resistance in 30%-50% of patients, and significant side effects. This review presents an updated and balanced discussion of the antitumor mechanisms of BCG, focusing on its direct effects on bladder cancer and its interactions with various cell types within the bladder tumor microenvironment. Notably, recent research on the interactions between BCG and the bladder microbiome is also incorporated. We further summarize and analyze the latest preclinical and clinical studies regarding both intrinsic and adaptive resistance to BCG in bladder cancer. Based on the current understanding of BCG's therapeutic principles and resistance mechanisms, we systematically explore strategies to improve BCG-based tumor immunotherapy. These include the development of recombinant BCG, combination therapy with different drugs, optimization of therapeutic regimens and management, and the exploration of new approaches by targeting changes in the bladder microbiota and its metabolites. These measures aim to effectively address the BCG resistance in bladder cancer, reduce its toxicity, and ultimately enhance the clinical anti-tumor efficacy. Bacterial therapy, represented by genetically engineered oncolytic bacteria, has gradually emerged in the field of cancer treatment in recent years. As the only bacterial drug successfully approved for oncology use, BCG has provided decades of clinical experience. By consolidating lessons from BCG's successes and limitations, we hope to provide valuable insights for the development and application of bacterial therapies in cancer treatment.
Collapse
Affiliation(s)
- Ni Jian
- Synthetic Biology Research Center, Institute for Advanced Study, International Cancer Center of Shenzhen University, Shenzhen, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Lei Yu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lijuan Ma
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Binbin Zheng
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Weiren Huang
- Synthetic Biology Research Center, Institute for Advanced Study, International Cancer Center of Shenzhen University, Shenzhen, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
2
|
Justiz-Vaillant A, Gopaul D, Soodeen S, Unakal C, Thompson R, Pooransingh S, Arozarena-Fundora R, Asin-Milan O, Akpaka PE. Advancements in Immunology and Microbiology Research: A Comprehensive Exploration of Key Areas. Microorganisms 2024; 12:1672. [PMID: 39203514 PMCID: PMC11357253 DOI: 10.3390/microorganisms12081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Immunology and microbiology research has witnessed remarkable growth and innovation globally, playing a pivotal role in advancing our understanding of immune mechanisms, disease pathogenesis, and therapeutic interventions. This manuscript presents a comprehensive exploration of the key areas in immunology research, spanning from the utilisation of bacterial proteins as antibody reagents to the intricate realms of clinical immunology and disease management. The utilisation of bacterial immunoglobulin-binding proteins (IBPs), including protein A (SpA), protein G (SpG), and protein L (SpL), has revolutionised serological diagnostics, showing promise in early disease detection and precision medicine. Microbiological studies have shed light on antimicrobial resistance patterns, particularly the emergence of extended-spectrum beta-lactamases (ESBLs), guiding antimicrobial stewardship programmes and informing therapeutic strategies. Clinical immunology research has elucidated the molecular pathways underlying immune-mediated disorders, resulting in tailored management strategies for conditions such as severe combined immunodeficiency (SCID), neuropsychiatric systemic lupus erythematosus (NPSLE), etc. Additionally, significant efforts in vaccine development against tuberculosis and HIV are highlighted, underscoring the ongoing global pursuit of effective preventive measures against these infectious diseases. In summary, immunology and microbiology research have provided significant contributions to global healthcare, fostering collaboration, innovation, and improved patient outcomes.
Collapse
Affiliation(s)
- Angel Justiz-Vaillant
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Darren Gopaul
- Port of Spain General Hospital, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago;
| | - Sachin Soodeen
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Chandrashekhar Unakal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Reinand Thompson
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Shalini Pooransingh
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 00000, Trinidad and Tobago;
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine 00000, Trinidad and Tobago
| | | | - Patrick Eberechi Akpaka
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 00000, Trinidad and Tobago;
| |
Collapse
|
3
|
Kowalewicz-Kulbat M, Locht C. Recombinant BCG to Enhance Its Immunomodulatory Activities. Vaccines (Basel) 2022; 10:827. [PMID: 35632582 PMCID: PMC9143156 DOI: 10.3390/vaccines10050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been widely used as a live vaccine against tuberculosis for a century. In addition to its use as a tuberculosis vaccine, BCG has also been found to have utility in the prevention or treatment of unrelated diseases, including cancer. However, the protective and therapeutic efficacy of BCG against tuberculosis and other diseases is not perfect. For three decades, it has been possible to genetically modify BCG in an attempt to improve its efficacy. Various immune-modulatory molecules have been produced in recombinant BCG strains and tested for protection against tuberculosis or treatment of several cancers or inflammatory diseases. These molecules include cytokines, bacterial toxins or toxin fragments, as well as other protein and non-protein immune-modulatory molecules. The deletion of genes responsible for the immune-suppressive properties of BCG has also been explored for their effect on BCG-induced innate and adaptive immune responses. Most studies limited their investigations to the description of T cell immune responses that were modified by the genetic modifications of BCG. Some studies also reported improved protection by recombinant BCG against tuberculosis or enhanced therapeutic efficacy against various cancer forms or allergies. However, so far, these investigations have been limited to mouse models, and the prophylactic or therapeutic potential of recombinant BCG strains has not yet been illustrated in other species, including humans, with the exception of a genetically modified BCG strain that is now in late-stage clinical development as a vaccine against tuberculosis. In this review, we provide an overview of the different molecular engineering strategies adopted over the last three decades in order to enhance the immune-modulatory potential of BCG.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- CHU Lille, Institut Pasteur de Lille, U1019–UMR9017–CIIL–Center for Infection and Immunity of Lille, University Lille, CNRS, Inserm, F-59000 Lille, France
| |
Collapse
|
4
|
Dai FY, Wang JF, Gong XL, Bao L. Immunogenicity and protective efficacy of recombinant Bacille Calmette-Guerin strains expressing mycobacterium antigens Ag85A, CFP10, ESAT-6, GM-CSF and IL-12p70. Hum Vaccin Immunother 2017; 13:1-8. [PMID: 28301284 DOI: 10.1080/21645515.2017.1279771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the immunogenicity and protective efficacy of recombinant bacille calmette-guerin (rBCG) strains expressing Ag85A (A), CFP10 (C), ESAT6 (E), IL-12p70 (I), and fusion protein GM-CSF (G). METHOD rBCGs were established by integrating of A, C, E, I, G, AE, CE, IE, GC, GE and GCE into Mycobacterium bovis BCG-1173 and BCG-SH. The macro-effects of rBCGs on mice were evaluated by phenotype and weight. The immunogenicity of rBCGs was analyzed by lgG, lgG1 and lgG2a antibody titers, and IFN-γ and IL-4 contents through Enzyme-linked immunosorbent assay (ELISA). Meanwhile, the proportions of CD4+ and CD8+ T splenic lymphocytes were determined using flow cytometry. The protective efficacy of rBCGs was evaluated by bacterial load in spleen and lung tissues from immunized mice. RESULTS rBCGs exhibited no obvious side effects on mice. The antibody titers of lgG, lgG1 and lgG2a, proportion of CD4+ and CD8+ T cells, and concentrations of IFN-γ were found to be significantly higher in multiple-gene rBCGs than that in single-gene rBCGs (P < 0.05). Bacterial load in both spleen and lung tissues from mice infected with M. tuberculosis H37Rv were significantly reduced by rBCGs. A significantly lower bacterial load was revealed in rBCG-1173:A compared with multiple-gene rBCGs (P < 0.05). CONCLUSION Immunogenicity was better on multiple-gene rBCGs than on single-gene rBCGs, while excellent protective efficacy was exhibited on rBCG-1173:A and BCG-1173.
Collapse
Affiliation(s)
- Fu-Ying Dai
- a Laboratory of Infection and Immunity, West China Center of Medical Science , Sichuan University , Chengdu , China.,b Department of Pathogenic Biology , School of Basic Medical Science, Chengdu Medical College , Chengdu , China
| | - Jun-Fang Wang
- a Laboratory of Infection and Immunity, West China Center of Medical Science , Sichuan University , Chengdu , China
| | - Xue-Li Gong
- a Laboratory of Infection and Immunity, West China Center of Medical Science , Sichuan University , Chengdu , China
| | - Lang Bao
- a Laboratory of Infection and Immunity, West China Center of Medical Science , Sichuan University , Chengdu , China
| |
Collapse
|