1
|
Zhang X, Chen J, Zhang S, Wei B, Han Y, Zhao Z. Insight into the Potential of Somatostatin Vaccination with Goats as a Model: From a Perspective of the Gastrointestinal Microbiota. Animals (Basel) 2025; 15:728. [PMID: 40076011 PMCID: PMC11899232 DOI: 10.3390/ani15050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Deciphering the gastrointestinal microbial response to oral SS DNA vaccines with different doses is helpful for identifying the mechanism for effective utilization of the vaccine for improving animal production. Here, we conduct a comparative study with different doses of vaccine (control: empty plasmid; low dose: 1 × 107 CFU vaccine; high dose: 1 × 1012 CFU vaccine) using goat as a case to investigate the potential of somatostatin vaccination from the entire gastrointestinal microbiota perspective. Our results show that body weight gain and slaughter rate are greater in the L_SS group than in the C_SS group. Compared with the C_SS group, the GH concentration is reduced, while the SS concentration is elevated in the cecum of L_SS goats. Moreover, the SCFAs concentration is elevated in the L_SS goats, the acetate molar proportion is lower in the rumen, the proportion of the acetate is decreased, and propionate is increased in the cecum of L_SS goats. Our data indicate that the low-dose somatostatin vaccine possesses a more efficient improvement in the productivity of goats, emphasizing that the dosage should be considered to reach its optimal effect on the host. Moreover, we find that different doses of the SS vaccination select distinct microbial communities in the gastrointestinal tract. Beta diversity analysis shows a significant interaction. Microorganisms capable of converting nutrients, including Ruminococcacease, Butyrivibrio, Akkermansia, and Lachnospiraceae are enriched, altering the gastrointestinal fermentation response to SS DNA vaccination of ruminants. Moreover, the correlation analysis results revealing these biomarkers have a close association with the phenotypes of productivity. These results imply that somatostatin immunoneutralization might directly alter the gastrointestinal tract commensal bacterial structure, improving gastrointestinal homeostasis, and, thus, modifying the fermentability and effected hormone level to improve the productivity of goats. Our study extends the understanding of the somatostatin vaccine regulation of ruminants' growth through the entire gastrointestinal microbial perspective.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongquan Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.Z.)
| |
Collapse
|
2
|
Qin G, Zhang L, Guo J, Fang S, E G, Zeng Y, Huang Y, Han Y. Combined Proteomic and Metabolomic Analysis Reveals Comprehensive Regulation of Somatostatin DNA Vaccine in Goats. Int J Mol Sci 2024; 25:6888. [PMID: 39000000 PMCID: PMC11241611 DOI: 10.3390/ijms25136888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Somatostatin (SS) plays crucial regulatory roles in animal growth and reproduction by affecting the synthesis and secretion of growth hormone (GH). However, the mechanism by which SS regulates growth and development in goats is still unclear. In order to investigate the regulatory networks of the hypothalamus and pituitary in goats affected by SS DNA vaccines, in this study, we used a previously established oral attenuated Salmonella typhimurium SS DNA vaccine, X9241 (ptCS/2SS-asd), to treat wethers. We analyzed the protein changes in hypothalamic and pituitary tissues using a TMT-based proteomics approach. Additionally, we examined the metabolic profiles of the serum of control and immunized wethers through untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS). Key signaling pathways were identified based on differentially expressed metabolites (DEMs) and differentially expressed proteins (DEPs). Furthermore, the effect of critical DEPs on signaling pathways was confirmed through Western blotting (WB) experiments, which elucidated the mechanism of active SS immunization in wethers. A proteomics analysis revealed that the expression of 58 proteins in the hypothalamus and 124 in the pituitary gland was significantly altered following SS vaccine treatment (fold change > 1.2 or < 0.83, p < 0.05). In the hypothalamus, many DEPs were associated with gene ontology (GO) terms related to neuronal signaling. In contrast, most DEPs were associated with metabolic pathways. In the pituitary gland, the DEPs were largely related to immune and nutrient metabolism functions, with significant enrichment in KEGG pathways, particularly those involving the metabolic pathway, sphingolipid signaling, and the cGMP-PKG signaling pathway. A metabolomic analysis further showed that active SS immunization in wethers led to significant alterations in seven serum metabolites. Notably, the sphingolipid signaling pathway, secondary bile acid synthesis, sphingolipid metabolism, and lysine synthesis were significantly disrupted. SS vaccines induced marked changes in hypothalamic-pituitary proteins in wethers, facilitating alterations in their growth processes. This study not only provides insights into the mechanism of the SS gene in regulating GH secretion in wethers but also establishes a basis for hormone immunoregulation technology to enhance livestock production performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanguo Han
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Q.); (L.Z.); (J.G.); (S.F.); (G.E.); (Y.Z.); (Y.H.)
| |
Collapse
|
3
|
Chen C, Zhou Z, Niu K, Du C, Liang A, Yang L. Efficacy and Safety of Nasal Immunisation with Somatostatin DNA Vaccine for Growth Promotion in Fattening Pigs. Animals (Basel) 2022; 12:3072. [PMID: 36428299 PMCID: PMC9686601 DOI: 10.3390/ani12223072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
This study aimed to evaluate the efficacy and safety of the SS DNA vaccine on growing pigs. Randomly, 147 pigs were divided into four groups, treatment 1 (T1, 3 × 109 CFU/mL, n = 39), T2 (3 × 108 CFU/mL, n = 35), T3 (3 × 107 CFU/mL, n = 35) and control group (phosphate-buffered saline, n = 38). All animals received two vaccinations separated by 45 days and the same diet and management. The results showed that all treatment groups (T1, T2 and T3) had significantly higher slaughter weight (d 185) than the Ctrl group (p < 0.05), and daily gain between 50 and 110 days of age was significantly higher in all treatment groups than in the Ctrl group (p < 0.05). Antibody-positive pigs have significantly higher daily weight gain than that in antibody-negative pigs (p < 0.05). The results of the meat quality analysis showed no significant changes between the P (antibody-positive pigs) and N (antibody-negative pigs) groups. Furthermore, the results showed that antibody titres at 110 and 185 days had a significant positive correlation with the daily weight gain (p < 0.05) and a significant negative correlation with the backfat thickness (p < 0.05). Evaluating the safety of vaccines by PCR amplification of target genes (GS/2SS), faecal, soil and water samples had no target genes detected by PCR amplification in these samples after 5 days, and no GS/2SS were detected in the blood and tissues for the experimental period. Moreover, no abnormalities were found in pathological sections of the P group compared with the N group. In conclusion, SS DNA vaccines can promote the growth of fattening pigs to a certain extent without altering the meat quality, and it has no effects on the safety of the surrounding environment.
Collapse
Affiliation(s)
- Chao Chen
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zichao Zhou
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaifeng Niu
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Du
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aixin Liang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China
| |
Collapse
|
4
|
Luo X, Zu Z, Riaz H, Dan X, Yu X, Liu S, Guo A, Wen Y, Liang A, Yang L. Evaluation of a Novel DNA Vaccine Double Encoding Somatostatin and Cortistatin for Promoting the Growth of Mice. Animals (Basel) 2022; 12:ani12121490. [PMID: 35739827 PMCID: PMC9219454 DOI: 10.3390/ani12121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Animal growth traits are directly linked with the economics of livestock species. A somatostatin DNA vaccine has been developed to improve the growth of animals. However, the growth-promoting effect is still unsatisfying. The current study aimed to evaluate the effect of a novel eukaryotic dual expression vaccine known as pIRES-S/CST14-S/2SS, which encodes the genes obtained by fusing somatostatin (SS) and cortistatin (CST) into hepatitis B surface antigen (HBsAg). After transfection into GH3 cells with pIRES-S/CST14-S/2SS, green fluorescence signals were observed by fluorescence microscopy, suggesting the effective expression of CST and SS in GH3 cells using the IRES elements. Subsequently, both GH and PRL levels were found to be significantly lower in pIRES-S/CST14-S/2SS-treated cells as compared to the control group (p < 0.05). Furthermore, the antibody level, hormone secretion, and weight gain in the mice injected with novel recombinant plasmids were also evaluated. The anti-SS antibodies were detectable in all vaccine treated groups, resulting in significantly higher levels of GH secretion (p < 0.05). It is worth mentioning that pIRES-S/CST14-S/2SS (10 μg/100 μL) vaccinated mice exhibited a higher body weight gain in the second immunization period. This study increases the understanding of the relationship between somatostatin and cortistatin, and may help to develop an effective growth-promoting DNA vaccine in animals.
Collapse
Affiliation(s)
- Xuan Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Zhuoxin Zu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
| | - Hasan Riaz
- Department of Biosciences, COMSATS University, Sahiwal Campus, Islamabad 57000, Pakistan;
| | - Xingang Dan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
| | - Xue Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Shuanghang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yilin Wen
- Yongzhou Vocational Technical College, Yongzhou 425100, China;
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Wuhan 430070, China
- Correspondence: (A.L.); (L.Y.)
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Wuhan 430070, China
- Correspondence: (A.L.); (L.Y.)
| |
Collapse
|
5
|
de la Cruz ML, Conrado I, Nault A, Perez A, Dominguez L, Alvarez J. Vaccination as a control strategy against Salmonella infection in pigs: A systematic review and meta-analysis of the literature. Res Vet Sci 2017; 114:86-94. [PMID: 28340428 DOI: 10.1016/j.rvsc.2017.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/12/2022]
Abstract
Consumption or handling of improperly processed or cooked pork is considered one of the top sources for foodborne salmonellosis, a common cause of intestinal disease worldwide. Asymptomatic carrier pigs may contaminate pork at slaughtering; therefore, pre-harvest reduction of Salmonella load can contribute to reduce public health risk. Multiple studies have evaluated the impact of vaccination on controlling Salmonella in swine farms, but results are highly variable due to the heterogeneity in vaccines and vaccination protocols. Here, we report the results of an inclusive systematic review and a meta-analysis of the peer-reviewed scientific literature to provide updated knowledge on the potential effectiveness of Salmonella vaccination. A total of 126 articles describing the use of Salmonella vaccines in swine were identified, of which 44 fulfilled the inclusion criteria. Most of the studies (36/44) used live vaccines, and S. Typhimurium and S. Choleraesuis were the predominant serotypes evaluated. Vaccine efficacy was most often measured through bacteriological isolation, and pooled estimates of vaccine efficacy were obtained as the difference in the percentage of positive animals when available. Attenuated and inactivated vaccines had similar efficacy [Risk Difference=-26.8% (-33.8, -19.71) and -29.5% (-44.4, -14.5), respectively]. No serotype effect was observed on the efficacy recorded for attenuated vaccines; however, a higher efficacy of inactivated vaccines against S. Choleraesuis was observed, though in a reduced sample. Results from the meta-analysis here demonstrate the impact that vaccination may have on the control of Salmonella in swine farms and could help in the design of programs to minimize the risk of transmission of certain serotypes through the food chain.
Collapse
Affiliation(s)
- M L de la Cruz
- Centro de Vigilancia Sanitaria Veterinaria VISAVET, Universidad Complutense, Avenida de Puerta de Hierro s/n, 28040Madrid, Spain
| | - I Conrado
- Department of Veterinary Population Medicine, University of Minnesota, 1971 Commonwealth Ave, St Paul, MN 55108, USA
| | - A Nault
- Veterinary Medical Library, University of Minnesota, 1971 Commonwealth Ave, St Paul, MN 55108, USA
| | - A Perez
- Department of Veterinary Population Medicine, University of Minnesota, 1971 Commonwealth Ave, St Paul, MN 55108, USA
| | - L Dominguez
- Centro de Vigilancia Sanitaria Veterinaria VISAVET, Universidad Complutense, Avenida de Puerta de Hierro s/n, 28040Madrid, Spain
| | - J Alvarez
- Department of Veterinary Population Medicine, University of Minnesota, 1971 Commonwealth Ave, St Paul, MN 55108, USA.
| |
Collapse
|