1
|
Handler K, Bach K, Borrelli C, Piscuoglio S, Ficht X, Acar IE, Moor AE. Fragment-sequencing unveils local tissue microenvironments at single-cell resolution. Nat Commun 2023; 14:7775. [PMID: 38012149 PMCID: PMC10681997 DOI: 10.1038/s41467-023-43005-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
Cells collectively determine biological functions by communicating with each other-both through direct physical contact and secreted factors. Consequently, the local microenvironment of a cell influences its behavior, gene expression, and cellular crosstalk. Disruption of this microenvironment causes reciprocal changes in those features, which can lead to the development and progression of diseases. Hence, assessing the cellular transcriptome while simultaneously capturing the spatial relationships of cells within a tissue provides highly valuable insights into how cells communicate in health and disease. Yet, methods to probe the transcriptome often fail to preserve native spatial relationships, lack single-cell resolution, or are highly limited in throughput, i.e. lack the capacity to assess multiple environments simultaneously. Here, we introduce fragment-sequencing (fragment-seq), a method that enables the characterization of single-cell transcriptomes within multiple spatially distinct tissue microenvironments. We apply fragment-seq to a murine model of the metastatic liver to study liver zonation and the metastatic niche. This analysis reveals zonated genes and ligand-receptor interactions enriched in specific hepatic microenvironments. Finally, we apply fragment-seq to other tissues and species, demonstrating the adaptability of our method.
Collapse
Affiliation(s)
- Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056, Basel, Switzerland
| | - Karsten Bach
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056, Basel, Switzerland
| | - Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056, Basel, Switzerland
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056, Basel, Switzerland
| | - Ilhan E Acar
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056, Basel, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056, Basel, Switzerland.
| |
Collapse
|
3
|
Blériot C, Barreby E, Dunsmore G, Ballaire R, Chakarov S, Ficht X, De Simone G, Andreata F, Fumagalli V, Guo W, Wan G, Gessain G, Khalilnezhad A, Zhang XM, Ang N, Chen P, Morgantini C, Azzimato V, Kong WT, Liu Z, Pai R, Lum J, Shihui F, Low I, Xu C, Malleret B, Kairi MFM, Balachander A, Cexus O, Larbi A, Lee B, Newell EW, Ng LG, Phoo WW, Sobota RM, Sharma A, Howland SW, Chen J, Bajenoff M, Yvan-Charvet L, Venteclef N, Iannacone M, Aouadi M, Ginhoux F. A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity 2021; 54:2101-2116.e6. [PMID: 34469775 DOI: 10.1016/j.immuni.2021.08.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Tissue macrophages are immune cells whose phenotypes and functions are dictated by origin and niches. However, tissues are complex environments, and macrophage heterogeneity within the same organ has been overlooked so far. Here, we used high-dimensional approaches to characterize macrophage populations in the murine liver. We identified two distinct populations among embryonically derived Kupffer cells (KCs) sharing a core signature while differentially expressing numerous genes and proteins: a major CD206loESAM- population (KC1) and a minor CD206hiESAM+ population (KC2). KC2 expressed genes involved in metabolic processes, including fatty acid metabolism both in steady-state and in diet-induced obesity and hepatic steatosis. Functional characterization by depletion of KC2 or targeted silencing of the fatty acid transporter Cd36 highlighted a crucial contribution of KC2 in the liver oxidative stress associated with obesity. In summary, our study reveals that KCs are more heterogeneous than anticipated, notably describing a subpopulation wired with metabolic functions.
Collapse
Affiliation(s)
- Camille Blériot
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Inserm U1015, Gustave Roussy, Villejuif 94800, France.
| | - Emelie Barreby
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | | | | | - Svetoslav Chakarov
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giorgia De Simone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Wei Guo
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guochen Wan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Gregoire Gessain
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore
| | - Xiao Meng Zhang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Ping Chen
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Cecilia Morgantini
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Valerio Azzimato
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Wan Ting Kong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rhea Pai
- Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Foo Shihui
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Ivy Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Connie Xu
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore
| | - Muhammad Faris Mohd Kairi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Olivier Cexus
- Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore
| | - Wint Wint Phoo
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Ankur Sharma
- Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Shanshan W Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Marc Bajenoff
- Aix Marseille University, CNRS, INSERM, CIML, Marseille 13288, France
| | | | - Nicolas Venteclef
- Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, IMMEDIAB Laboratory, Paris 75006, France
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy; Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Myriam Aouadi
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore.
| |
Collapse
|
4
|
McCormick PA, Higgins M, McCormick CA, Nolan N, Docherty JR. Hepatic infarction, hematoma, and rupture in HELLP syndrome: support for a vasospastic hypothesis. J Matern Fetal Neonatal Med 2021; 35:7942-7947. [PMID: 34130599 DOI: 10.1080/14767058.2021.1939299] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose: HELLP syndrome is a relatively uncommon pregnancy-related condition characterized by hemolysis, elevated liver function tests, and low platelets. It can be accompanied by life-threatening hepatic complications including hepatic infarction, hematoma formation, and hepatic rupture. HELLP syndrome occurs in approximately 0.2% of pregnancies. Major hepatic complications occur in less than 1% of HELLP patients suggesting an incidence of 1/50,000. The pathogenesis is incompletely understood and in particular, it is difficult to understand a disorder with both major thrombotic and bleeding manifestations.Methods: Literature review.Results: On the basis of reports in the published literature, and our own clinical experience, we suggest that vasospasm is one of the principal drivers with hepatic ischemia, infarction, and hemorrhage as secondary events. It is known that vasoactive substances are released by the failing placenta. We suggest these cause severe vasospasm, most likely affecting the small post-sinusoidal hepatic venules. This leads to patchy or confluent hepatic ischemia and/or necrosis with a resultant increase in circulating liver enzymes. Reperfusion is associated with a fall in platelet count and microvascular hemorrhage if the microvasculature is infarcted. Blood tracks to the subcapsular space causing hematoma formation. If the hematoma ruptures the patient presents with severe abdominal pain, intra-abdominal hemorrhage, and shock.Conclusions: We suggest that hepatic and other complications associated with HELLP syndrome including placental abruption, acute renal failure, and posterior reversible encephalopathy syndrome (PRES) may also be due to regional vasospasm.
Collapse
Affiliation(s)
- P A McCormick
- Liver Unit, St Vincent's University Hospital, Dublin, Ireland
| | - M Higgins
- University College Dublin Perinatal Research Centre, National Maternity Hospital, Dublin, Ireland
| | - C A McCormick
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Melbourne, Australia
| | - N Nolan
- Histopathology Department, St Vincent's University Hospital, Dublin, Ireland
| | - J R Docherty
- Physiology Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
5
|
Wu P, Zhou D, Lin W, Li Y, Wei H, Qian X, Jiang Y, He F. Cell-type-resolved alternative splicing patterns in mouse liver. DNA Res 2018; 25:4793385. [PMID: 29325017 PMCID: PMC6014294 DOI: 10.1093/dnares/dsx055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing (AS) is an important post-transcriptional regulatory mechanism to generate transcription diversity. However, the functional roles of AS in multiple cell types from one organ have not been reported. Here, we provide the most comprehensive profile for cell-type-resolved AS patterns in mouse liver. A total of 13,637 AS events are detected, representing 81.5% of all known AS events in the database. About 46.2% of multi-exon genes undergo AS from the four cell types of mouse liver: hepatocyte, liver sinusoidal endothelial cell, Kupffer cell and hepatic stellate cell, which regulates cell-specific functions and maintains cell characteristics. We also present a cell-type-specific splicing factors network in these four cell types of mouse liver, allowing data mining and generating knowledge to elucidate the roles of splicing factors in sustaining the cell-type-specialized AS profiles and functions. The splicing switching of Tak1 gene between different cell types is firstly discovered and the specific Tak1 isoform regulates hepatic cell-type-specific functions is verified. Thus, our work constructs a hepatic cell-specific splicing landscape and reveals the considerable contribution of AS to the cell type constitution and organ features.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Donghu Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Weiran Lin
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yanyan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Handong Wei
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ying Jiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|