1
|
Zhou X, Chen B, Zhang Z, Huang Y, Li J, Wei Q, Cao D, Ai J. Crosstalk between Tumor-Associated Macrophages and MicroRNAs: A Key Role in Tumor Microenvironment. Int J Mol Sci 2022; 23:13258. [PMID: 36362044 PMCID: PMC9653885 DOI: 10.3390/ijms232113258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
As an in-depth understanding of immunotherapy continues to grow, current anticancer therapy research is increasingly focused on the tumor microenvironment (TME). MicroRNAs (miRNAs) play crucial roles in the regulation of genetic information and expression and mediate interactions between tumor cells and components in the TME, such as tumor-associated macrophages (macrophages). Macrophages are abundant in the TME, and their different polarization directions can promote or inhibit tumor growth and progression. By regulating biological behaviors, such as macrophage recruitment, infiltration, and polarization, miRNAs can affect various molecular pathways to regulate tumor progression and treatment response. In this review, we discuss in detail the effects of macrophages on tumors and the multifaceted effects of miRNAs on macrophages. We also discuss the potential clinical applications and prospects of targeted therapy based on miRNAs, novel clinical biomarkers, and drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehong Cao
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Sempere LF, Azmi AS, Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1662. [PMID: 33998154 PMCID: PMC8519065 DOI: 10.1002/wrna.1662] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023]
Abstract
It has been almost two decades since the first link between microRNAs and cancer was established. In the ensuing years, this abundant class of short noncoding regulatory RNAs has been studied in virtually all cancer types. This tremendously large body of research has generated innovative technological advances for detection of microRNAs in tissue and bodily fluids, identified the diagnostic, prognostic, and/or predictive value of individual microRNAs or microRNA signatures as potential biomarkers for patient management, shed light on regulatory mechanisms of RNA-RNA interactions that modulate gene expression, uncovered cell-autonomous and cell-to-cell communication roles of specific microRNAs, and developed a battery of viral and nonviral delivery approaches for therapeutic intervention. Despite these intense and prolific research efforts in preclinical and clinical settings, there are a limited number of microRNA-based applications that have been incorporated into clinical practice. We review recent literature and ongoing clinical trials that highlight most promising approaches and standing challenges to translate these findings into viable microRNA-based clinical tools for cancer medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Lorenzo F. Sempere
- Department of Radiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Asfar S. Azmi
- Department of OncologyWayne State University School of MedicineDetroitMichiganUSA
- Karmanos Cancer InstituteDetroitMichiganUSA
| | - Anna Moore
- Departments of Radiology and Physiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
3
|
Jafarzadeh A, Marzban H, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Hamblin MR, Mirzaei H, Mirzaei HR. Dysregulated expression of miRNAs in immune thrombocytopenia. Epigenomics 2021; 13:1315-1325. [PMID: 34498489 DOI: 10.2217/epi-2021-0092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years the critical role of miRNAs has been established in many diseases, including autoimmune disorders. Immune thrombocytopenia purpura (ITP) is a predominant autoimmune disease, in which aberrant expression of miRNAs has been observed, suggesting that miRNAs are involved in its development. miRNAs could induce an imbalance in the T helper (Th)1/Th2 cell and Th17/Treg cell-related responses. Moreover, they could also cause alterations in Th9 and Th22 cell responses, and activate Tfh (T follicular helper) cell-dependent auto-reactive B cells, thus influencing megakaryogenesis. Herein, we summarize the role of immune-related miRNAs in ITP pathogenesis, and look forward to clinical applications.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, 76169-13555, Kerman, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, 7718175911, Rafsanjan, Iran
| | - Havva Marzban
- Department of Pathology & Experimental Animals, Razi Vaccine & Serum Research Institute, Agricultural Research, Education & Extension Organization (AREEO), 31975/148 Karaj, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, 77181/75911, Rafsanjan, Iran.,Department of Hematology & Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, 76169-13555, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, 76169-13555, Kerman, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, 13131- 99137, Mashhad, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, 2028 Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, 87159-88141, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, 87159-88141, Kashan, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, 1417613151, Tehran, Iran
| |
Collapse
|
4
|
Ghafouri-Fard S, Abak A, Tavakkoli Avval S, Shoorei H, Taheri M, Samadian M. The impact of non-coding RNAs on macrophage polarization. Biomed Pharmacother 2021; 142:112112. [PMID: 34449319 DOI: 10.1016/j.biopha.2021.112112] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophage polarization is a process through which macrophages attain unique functional features as a response to certain stimuli from their niche. Lipopolysaccharide and Th1 cytokines induce generation of M1 macrophages. On the other hand, IL-4, IL-13, IL-10, IL-33, and TGF-β induce polarization of macrophages towards M2 phenotype. This process is also modulated by a number of miRNAs and lncRNAs. miR-375, miR-let7, miR-34a, miR-155, miR-124, miR-34a, miR-511-3p, miR-99a, miR-132 and miR-145-3p are among miRNAs that regulate macrophage polarization. Meanwhile, macrophage polarization is influenced by some lncRNAs such as H19, NRON, MEG3, GAS5, RN7SK, and AK085865. Macrophage polarization has functional significance in a wide range of human disorders particularly immune disorders and cancer. In addition, the effect of certain drugs in modulation of macrophage polarization is exerted through modulation of expression of non-coding RNAs. In the current manuscript, we provide a summary of studies aimed to identification of this aspect of non-coding RNAs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Ni YA, Chen H, Nie H, Zheng B, Gong Q. HMGB1: An overview of its roles in the pathogenesis of liver disease. J Leukoc Biol 2021; 110:987-998. [PMID: 33784425 DOI: 10.1002/jlb.3mr0121-277r] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/06/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is an abundant architectural chromosomal protein that has multiple biologic functions: gene transcription, DNA replication, DNA-damage repair, and cell signaling for inflammation. HMGB1 can be released passively by necrotic cells or secreted actively by activated immune cells into the extracellular milieu after injury. Extracellular HMGB1 acts as a damage-associated molecular pattern to initiate the innate inflammatory response to infection and injury by communicating with neighboring cells through binding to specific cell-surface receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation end products (RAGE). Numerous studies have suggested HMGB1 to act as a key protein mediating the pathogenesis of chronic and acute liver diseases, including nonalcoholic fatty liver disease, hepatocellular carcinoma, and hepatic ischemia/reperfusion injury. Here, we provide a detailed review that focuses on the role of HMGB1 and HMGB1-mediated inflammatory signaling pathways in the pathogenesis of liver diseases.
Collapse
Affiliation(s)
- Yuan-Ao Ni
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| |
Collapse
|
6
|
Jia X, Wei Y, Miao X, Zhu T, Hu X, Lin Z, Xiao W, Zhang Y, Wang Z, Gong W. Deficiency of miR-15a/16 upregulates NKG2D in CD8 + T cells to exacerbate dextran sulfate sodium-induced colitis. Biochem Biophys Res Commun 2021; 554:114-122. [PMID: 33784506 DOI: 10.1016/j.bbrc.2021.03.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023]
Abstract
The miR-15a/16 gene cluster is located in human chromosome 13 (13q14.3) and mouse chromosome 14 (14qC3). These genes are involved in cancer development and immune regulation. Our group has previously verified the binding of the 3'-untranslated region of NKG2D gene by miR-16 through dual-luciferase reporter assay. Herein, we found that miR-16 overexpression inhibited the NKG2D expression of CD8+ T cells, and that CD8+ NKG2D+ T cell frequency increased in miR-15/16-/- mice. CD8+ NKG2D+ T cells derived of miR-15/16-/- mice displayed activatory phenotype with enhanced IFN-γ production and cytotoxicity. The transfection of lentivirus containing antago-miR-16 sequences enhanced the NKG2D expression level of CD8+ T cells. However, no significant differences in CD8+ NKG2D+ T cell frequencies existed between wild-type and miR-15/16-transgenic mice because NKG2D was not expressed on the rest CD8+ T cells. When CD8+ T cells of miR-15/16-transgenic mice were treated with IL-2 in vitro, the magnitude of NKG2D expression and activation of CD8+ T cells was lower than that of wild-type mice. miR-15/16-/- mice showed that the exacerbation of colitis induced by dextran sulfate sodium (DSS) with more CD8+ T cells accumulated in inflamed colons, whereas miR-15/16-transgenic mice ameliorated DSS-induced colitis with less infiltration of CD8+ T cells. When NKG2D+ cells were depleted with NKG2D antibody in miR-15/16-/- mice, the aggravated colitis disappeared. All these results demonstrated that NKG2D could be upregulated by decreased miR-16 in CD8+ T cells to mediate inflammation. Thus, gene therapy based on the overexpression of miR-16 in CD8+ T cells can be used for patients with inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoqin Jia
- Department of Basic Medicine, School of Medicine, Yangzhou University, China
| | - Yingying Wei
- Department of Basic Medicine, School of Medicine, Yangzhou University, China
| | - Xin Miao
- Department of Basic Medicine, School of Medicine, Yangzhou University, China
| | - Tao Zhu
- Department of Basic Medicine, School of Medicine, Yangzhou University, China
| | - Xiangyu Hu
- Department of Basic Medicine, School of Medicine, Yangzhou University, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, China
| | - Zhijie Lin
- Department of Basic Medicine, School of Medicine, Yangzhou University, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, China
| | - Weiming Xiao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, China; Department of General Surgery, Affiliated Hospital, Yangzhou University, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Zhengbing Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, China; Department of General Surgery, Affiliated Hospital, Yangzhou University, China.
| | - Weijuan Gong
- Department of Basic Medicine, School of Medicine, Yangzhou University, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, China; Department of General Surgery, Affiliated Hospital, Yangzhou University, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Zhou D, Wu Y, Wang S, Li J, Luan J. Harnessing noncoding RNA-based macrophage polarization: Emerging therapeutic opportunities for fibrosis. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:793-806. [PMID: 33080104 PMCID: PMC7654411 DOI: 10.1002/iid3.341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Aim Organ fibrosis is a common pathological outcome of persistent tissue injury correlated with organ failure and death. Although current antifibrotic therapies have led to unprecedented successes, only a minority of patients with fibrosis benefit from these treatments. There is an urgent need to identify new targets and biomarkers that could be exploited in the diagnosis and treatment of fibrosis. Methods Macrophages play a dual role in the fibrogenesis across different organs either by promoting pro‐inflammatory or anti‐inflammatory responses. Noncoding RNAs (ncRNAs) have been demonstrated to play key roles in macrophage functions by manipulating macrophage polarization. Therefore, understanding the mechanism of ncRNA‐associated macrophage polarization is important to move toward therapeutic interventions. Results In this review, we provide an overview of recent insights into the role of ncRNAs in different fibrotic diseases by modulating macrophage phenotypic plasticity and functional heterogeneity. We also discuss the potential mechanisms of different ncRNAs integrate heterogeneous macrophages in fibrogenesis,including regulatory signatures, networks, and reciprocal interactions. Conclusions A broader understanding of how ncRNA‐directed macrophage phenotype transition in immunity and fibrosis might promote the development of a novel strategy for antifibrotic treatment.
Collapse
Affiliation(s)
- Dexi Zhou
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China.,School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui Province, China
| | - Yilai Wu
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China.,School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China.,School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui Province, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China.,School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
8
|
Zhang H, Wang Y, Li S, Tang X, Liang R, Yang X. SOCS3 protects against neonatal necrotizing enterocolitis via suppressing NLRP3 and AIM2 inflammasome activation and p65 nuclear translocation. Mol Immunol 2020; 122:21-27. [PMID: 32278838 DOI: 10.1016/j.molimm.2020.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is an acquired disorder of mucosal damage characterized by the diffuse or local necrosis of the intestine. The suppressor of cytokine signaling 3 (SOCS3) has been demonstrated to possess anti-inflammatory action in gastritis, ulcerative colitis and other inflammatory diseases. The present study aims to explore the effects of SOCS3 on LPS-induced colonic cell model of NEC, and investigate the underlying mechanisms. METHODS Expression of SOCS3 in tissue samples of NEC and LPS-induced enterocytes were evaluated by real-time quantitative PCR (RT-qPCR). Western blotting and enzyme-linked immunosorbent assay (ELISA) were applied to examine the effect of SOCS3 on inflammatory molecules. Co-immunoprecipitation assay were devoted to explore the relation between SOCS3 and TLR4. RESULTS We proved that SOCS3 was expressed at a low level in tissue samples of NEC and LPS-induced enterocytes, and LPS inhibited SOCS3 expression via JAK2/STAT3 pathway. Overexpression of SOCS3 weaken the LPS-induced inflammatory response in FHC and CACO2 cells. Moreover, SOCS3 downregulates proinflammatory cytokines by targeting TLR4, thus mediating the p65 nuclear translocation, and the activation of NLR family pyrin domain containing 3/absent in melanoma-2 (NLRP3/AIM2) inflammasome, ultimately reveals its anti-inflammatory effects. CONCLUSIONS Taken together, our data revealed that LPS inhibited SOCS3 expression via JAK2/STAT3 pathway, and SOCS3 protects enterocytes against NEC through mediating p65 nuclear translocation and NLRP3/AIM2 inflammasome activation in a TLR4 dependent manner.
Collapse
Affiliation(s)
- Hua Zhang
- Pediatric intensive care unit, The Affiliated Children's Hospital of Xi'an Jiaotong University, 69 Xijuyuan Lane, Xi'an, Shaanxi, 710003, China
| | - Yi Wang
- Neonatal Intensive Care Unit, The Affiliated Children's Hospital of Xi'an Jiaotong University, 69 Xijuyuan Lane, Xi'an, Shaanxi, 710003, China
| | - Sixiu Li
- Neonatal Intensive Care Unit, The Affiliated Children's Hospital of Xi'an Jiaotong University, 69 Xijuyuan Lane, Xi'an, Shaanxi, 710003, China
| | - Xiaojing Tang
- Neonatal Intensive Care Unit, The Affiliated Children's Hospital of Xi'an Jiaotong University, 69 Xijuyuan Lane, Xi'an, Shaanxi, 710003, China
| | - Ruobing Liang
- Neonatal Intensive Care Unit, The Affiliated Children's Hospital of Xi'an Jiaotong University, 69 Xijuyuan Lane, Xi'an, Shaanxi, 710003, China
| | - Xuefeng Yang
- Neonatal Intensive Care Unit, The Affiliated Children's Hospital of Xi'an Jiaotong University, 69 Xijuyuan Lane, Xi'an, Shaanxi, 710003, China.
| |
Collapse
|
9
|
Ma LN, Huang XB, Muyayalo KP, Mor G, Liao AH. Lactic Acid: A Novel Signaling Molecule in Early Pregnancy? Front Immunol 2020; 11:279. [PMID: 32180770 PMCID: PMC7057764 DOI: 10.3389/fimmu.2020.00279] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Aerobic glycolysis is a recognized feature shared by tumors, leading to the accumulation of lactic acid in their local microenvironments. Like the tumors, the blastocysts, placenta, trophoblasts and decidual immune cells can also produce a large amount of lactic acid through aerobic glycolysis during the early pregnancy. Moreover, the placenta expresses the transporters of the lactic acid. While several studies have described the role of lactic acid in the tumor microenvironment, especially lactic acid's modulation of immune cells, the role of lactic acid produced during pregnancy is still unclear. In this paper, we reviewed the scientific evidence detailing the effects of lactic acid in the tumor microenvironment. Based on the influence of the lactic acid on immune cells and tumors, we proposed that lactic acid released in the unique uterine environment could have similar effects on the trophoblast cells and immune cells during the early pregnancy.
Collapse
Affiliation(s)
- Li-Na Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Bo Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ai-Hua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Zhang W, Li Y, Xi X, Zhu G, Wang S, Liu Y, Song M. MicroRNA‑15a‑5p induces pulmonary artery smooth muscle cell apoptosis in a pulmonary arterial hypertension model via the VEGF/p38/MMP‑2 signaling pathway. Int J Mol Med 2019; 45:461-474. [PMID: 31894295 PMCID: PMC6984778 DOI: 10.3892/ijmm.2019.4434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the role of microRNA-15a-5p (miR-15a-5p) in pulmonary arterial hypertension (PAH) and elucidate the underlying pro-apoptotic mechanism. Reverse transcription-quantitative PCR analysis and gene microarray hybridization were used to measure the expression of miR-15a-5p in the lung tissues of rats with monocrotaline (MCT)-induced PAH. Flow cytometry and caspase-3/9 activity assays were adopted to measure the apoptosis of pulmonary artery smooth muscle cells (PASMCs). The expression of apoptosis-related proteins was analyzed using western blotting. The results demonstrated that the expression of miR-15a-5p was significantly increased in the lung tissues of rats with MCT-induced PAH. In addition, the overexpression of miR-15a-5p reduced PASMC proliferation, induced apoptosis, promoted the activity of caspase-3/9, induced the protein expression of B-cell lymphoma 2-associated X protein (Bax), decreased the expression of B-cell lymphoma 2 (Bcl-2), increased inflammation, as indicated by the expression of tumor necrosis factor-α (TNF)-α and interleukin (IL)-1β, IL-6 and IL-18, suppressed the protein expression of vascular endothelial growth factor (VEGF), and promoted the protein expression levels of phosphorylated (p)-p38 mitogen-activated protein kinase (p38) and matrix metalloproteinase (MMP)-2 in the PASMCs of rats with MCT-induced PAH. By contrast, the downregulation of miR-15a-5p increased cell proliferation, decreased apoptosis, reduced the activity of caspase-3/9 and the protein expression of Bax, increased the expression of Bcl-2, inhibited inflammation (as suggested by the expression of TNF-α, IL-1β, IL-6 and IL-18), induced the protein expression of VEGF, and suppressed the protein expression of p-p38 and MMP-2 in the PASMCs of rats with MCT-induced PAH. The inhibition of VEGF attenuated the effects of the overexpression of miR-15a-5p on the inhibition of cell proliferation, apoptotic rate, caspase-3/9 activity and protein expression of Bax, and it attenuated the increased inflammation, as indicated by the protein expression of p38 and MMP-2 in the PASMCs. In conclusion, the data of the present study demonstrated that miR-15a-5p induced the apoptosis of PASMCs in an animal model of PAH via the VEGF/p38/MMP-2 signaling pathway. However, further research is required to fully elucidate the role of miR-15a-5p in the development of PAH.
Collapse
Affiliation(s)
- Wenmei Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yanna Li
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Xin Xi
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Guangfa Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Shenghao Wang
- Infectious Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yan Liu
- Infectious Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Man Song
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| |
Collapse
|
11
|
Xu SJ, Hu HT, Li HL, Chang S. The Role of miRNAs in Immune Cell Development, Immune Cell Activation, and Tumor Immunity: With a Focus on Macrophages and Natural Killer Cells. Cells 2019; 8:cells8101140. [PMID: 31554344 PMCID: PMC6829453 DOI: 10.3390/cells8101140] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) is the primary arena where tumor cells and the host immune system interact. Bidirectional communication between tumor cells and the associated stromal cell types within the TME influences disease initiation and progression, as well as tumor immunity. Macrophages and natural killer (NK) cells are crucial components of the stromal compartment and display either pro- or anti-tumor properties, depending on the expression of key regulators. MicroRNAs (miRNAs) are emerging as such regulators. They affect several immune cell functions closely related to tumor evasion of the immune system. This review discusses the role of miRNAs in the differentiation, maturation, and activation of immune cells as well as tumor immunity, focusing particularly on macrophages and NK cells.
Collapse
Affiliation(s)
- Shi Jun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hong Tao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hai Liang Li
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
12
|
Höglund P. Dear readers of theScandinavian Journal of Immunologyand ECI 2018 attendees. Scand J Immunol 2018. [DOI: 10.1111/sji.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|