1
|
Sachinidis A, Trachana M, Taparkou A, Gavriilidis G, Vasileiou V, Keisaris S, Verginis P, Adamichou C, Boumpas D, Psomopoulos F, Garyfallos A. Characterization of T-bet expressing B cells in lupus patients indicates a putative prognostic and therapeutic value of these cells for the disease. Clin Exp Immunol 2025; 219:uxaf008. [PMID: 39918986 PMCID: PMC12062963 DOI: 10.1093/cei/uxaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/02/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025] Open
Abstract
OBJECTIVE To investigate whether T-bet+ B cells, as well as age-associated B cells/ABCs (CD19 + CD21-CD11c + T-bet+) and double-negative B cells/DN (CD19 + IgD-CD27- CXCR5-T-bet+), serve as prognostic and/or therapeutic tools for systemic lupus erythematosus (SLE) in humans. METHODS Flow cytometry was used for enumerating T-bet+ B cells and ABCs/DN subsets, found in the peripheral blood of 10 healthy donors and 22 active SLE patients. Whole blood assay cultures, combined with in vitro pharmacological treatments, were performed to evaluate the effects of hydroxychloroquine, anifrolumab, and fasudil (a ROCK kinase inhibitor) on T-bet+ B cells' percentage. Moreover, previously published single-cell RNA sequencing (scRNA-seq) data were used in a meta-analysis to allow characterization of genes and pathways associated with the biology of T-bet in B cells. RESULTS T-bet+ B cells displayed an expansion in SLE patients [1.47 (1.9-0.7) vs 10.85 (37.4-3.6)]. Similarly, both ABCs and DN were found to be expanded. Interestingly, percentages of T-bet+ B cells positively correlated with patients' SLEDAI scores (rs = 0.55, P = 0.007). Cell culture experiments conducted revealed that all three agents tested can deplete T-bet + B cells (without affecting the cell viability of lymphocytes, T cells, and B cells). According to bioinformatics analyses, T-bet is highly expressed in two B-cell clusters with pathogenic characteristics for SLE (designated as atypical memory B cells and activated naïve B cells). These clusters can be targeted for therapeutic interventions. CONCLUSIONS T-bet+ B cells can serve as a putative prognostic biomarker of lupus severity. Circumstantial data suggest that these cells may promote disease pathogenesis and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Trachana
- Paediatric Immunology and Rheumatology Referral Centre, 1st Paediatric Department, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Taparkou
- Paediatric Immunology and Rheumatology Referral Centre, 1st Paediatric Department, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Gavriilidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Vasileios Vasileiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Sofoklis Keisaris
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Christina Adamichou
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Boumpas
- 4th Department of Internal Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Alexandros Garyfallos
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Di Zazzo A, De Piano M, Coassin M, Mori T, Balzamino BO, Micera A. Ocular surface toll like receptors in ageing. BMC Ophthalmol 2022; 22:185. [PMID: 35459112 PMCID: PMC9027701 DOI: 10.1186/s12886-022-02398-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
Background To evaluate changes in Toll Like Receptors (TLRs) expression at the ocular surface of healthy volunteers within different age groups. Methods Fifty-one healthy volunteers were enrolled in a pilot observational study. Clinical function tests (OSDI questionnaire, Schirmer test type I and Break Up time) were assessed in all subjects. Temporal Conjunctival imprints were performed for molecular and immunohistochemical analysis to measure TLRs expression (TLR2, 4, 3, 5, 7, 8, 9 and MyD88). Results Immunofluorescence data showed an increased TLR2 and decreased TLR7 and TLR8 immunoreactivity in old conjunctival imprints. Up-regulation of TLR2 and down-regulation of TLR7, TLR8 and MyD88 transcripts expression corroborated the data. A direct correlation was showed between increasing ICAM-1 and increasing TLR2 changes with age. Within the age OSDI score increases, T-BUT values decrease, and goblet cells showed a decreasing trend. Conclusion Changes in TLRs expression are associated with ageing, suggesting physiological role of TLRs in modulating ocular surface immunity. TLRs age related changes may participate to the changes of ocular surface homeostatic mechanisms which lead to inflammAging.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Maria De Piano
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Rome, Italy
| | - Marco Coassin
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Tommaso Mori
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Rome, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Rome, Italy.
| |
Collapse
|
3
|
Li X, Sun X, Guo X, Li X, Peng S, Mu X. Chemical reagents modulate nucleic acid-activated toll-like receptors. Biomed Pharmacother 2022; 147:112622. [PMID: 35008000 DOI: 10.1016/j.biopha.2022.112622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid-mediated interferon signaling plays a pivotal role in defense against microorganisms, especially during viral infection. Receptors sensing exogenous nucleic acid molecules are localized in the cytosol and endosomes. Cytosolic sensors, including cGAS, RIG-I, and MDA5, and endosome-anchored receptors are toll-like receptors (TLR3, TLR7, TLR8, and TLR9). These TLRs share the same domain architecture and have similar structures, facing the interior of endosomes so their binding to nucleic acids of invading pathogens via endocytosis is possible. The correct function of these receptors is crucial for cell homeostasis and effective response against pathogen invasion. A variety of endogenous mechanisms modulates their activities. Nevertheless, naturally occurring mutations lead to aberrant TLR-mediated interferon (IFN) signaling. Furthermore, certain pathogens require a more robust defense against control. Thus, manipulating these TLR activities has a profound impact. High-throughput virtual screening followed by experimental validation led to the discovery of numerous chemicals that can change these TLR-mediated IFN signaling activities. Many of them are unique in selectivity, while others regulate more than one TLR due to commonalities in these receptors. We summarized these nucleic acid-sensing TLR-mediated IFN signaling pathways and the corresponding chemicals activating or deactivating their signaling.
Collapse
Affiliation(s)
- Xiao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xinyuan Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xuemin Guo
- Meizhou People's Hospital, Meizhou 514031, China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou 514031, China
| | - Xueren Li
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China
| | - Shouchun Peng
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China.
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Enocsson H, Wetterö J, Eloranta ML, Gullstrand B, Svanberg C, Larsson M, Bengtsson AA, Rönnblom L, Sjöwall C. Comparison of Surrogate Markers of the Type I Interferon Response and Their Ability to Mirror Disease Activity in Systemic Lupus Erythematosus. Front Immunol 2021; 12:688753. [PMID: 34276678 PMCID: PMC8278235 DOI: 10.3389/fimmu.2021.688753] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
Objectives Type I interferons (IFNs) are central and reflective of disease activity in systemic lupus erythematosus (SLE). However, IFN-α levels are notoriously difficult to measure and the type I IFN gene signature (IGS) is not yet available in clinical routine. This study evaluates galectin-9 and an array of chemokines/cytokines in their potential as surrogate markers of type I IFN and/or SLE disease activity. Methods Healthy controls and well-characterized Swedish SLE patients from two cross-sectional cohorts (n=181; n=59) were included, and a subgroup (n=21) was longitudinally followed. Chemokine/cytokine responses in immune complex triggered IFN-α activity was studied in healthy donor peripheral blood mononuclear cells (PBMC). Levels of chemokines/cytokines and galectin-9 were measured by immunoassays. Gene expression was quantified by qPCR. Results The IGS was significantly (p<0.01) correlated with galectin-9 (rho=0.54) and CXCL10 (rho=0.37) levels whereas serum IFN-α correlated with galectin-9 (rho=0.36), CXCL10 (rho=0.39), CCL19 (rho=0.26) and CCL2 (rho=0.19). The strongest correlation was observed between galectin-9 and TNF (rho=0.56). IFN-α and disease activity (SLEDAI-2K) were correlated (rho=0.20) at cross-sectional analysis, but no significant associations were found between SLEDAI-2K and galectin-9 or chemokines. Several inflammatory mediators increased at disease exacerbation although CCL19, CXCL11, CXCL10, IL-10 and IL-1 receptor antagonist were most pronounced. Immune complex-stimulation of PBMC increased the production of CCL2, CXCL8 and TNF. Conclusion Galectin-9 and CXCL10 were associated with type I IFN in SLE but correlated stronger with TNF. None of the investigated biomarkers showed a convincing association with disease activity, although CXCL10 and CCL19 performed best in this regard.
Collapse
Affiliation(s)
- Helena Enocsson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| | - Jonas Wetterö
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Birgitta Gullstrand
- Department of Clinical Sciences Lund, Division of Rheumatology, Lund University, Lund, Sweden
| | - Cecilia Svanberg
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Marie Larsson
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences Lund, Division of Rheumatology, Lund University, Lund, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Hu Y, Zhang H, Wu M, Liu J, Li X, Zhu X, Li C, Chen H, Liu C, Niu J, Ding Y. Safety, pharmacokinetics and pharmacodynamics of TQ-A3334, an oral toll-like receptor 7 agonist in healthy individuals. Expert Opin Investig Drugs 2021; 30:263-269. [PMID: 33405993 DOI: 10.1080/13543784.2021.1873275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS TQ-A3334, a selective, oral toll-like receptor (TLR)-7 agonist, is being developed to treat chronic hepatitis B (CHB). This study evaluated the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of TQ-A3334 in healthy participants. RESEARCH DESIGN AND METHODS The effects of a single-ascending dose of TQ-A3334 (0.2-1.8 mg) combined with food (1.2 mg) were evaluated in 48 healthy participants. RESULTS No serious adverse events or discontinuations occurred in the study. The most common adverse reactions were lymphocyte count decreased and headache, which were generally consistent with IFN-α exposure and the mechanism of action of a TLR7 agonist. TQ-A3334 was rapidly absorbed, with a time to maximum plasma concentration of 0.42-0.5 h. Systemic exposure (Cmax and AUC) to TQ-A3334 increased with a slight saturation proportion to dose. Food reduced the exposure of TQ-A3334. The concentrations of MCP-1, ISG-15, MX-1, and OAS-1 were observed to be slightly dose-dependent, ranging from 1.0 to 1.8 mg TQ-A3334. CONCLUSIONS Oral doses of 0.2-1.8 mg appeared to be safe and tolerated. PD activity was seen at doses ranging from 1.0 to 1.8 mg, indicating its possible future use to treat CHB. TRIAL REGISTRATION The trial is registered at the Chinese Clinical Trial website (http://www.chinadrugtrials.org.cn/index.html # CTR20182248).
Collapse
Affiliation(s)
- Yue Hu
- Phase I Clinical Research Center, the First Hospital of Jilin University, Jilin, China
| | - Hong Zhang
- Phase I Clinical Research Center, the First Hospital of Jilin University, Jilin, China
| | - Min Wu
- Phase I Clinical Research Center, the First Hospital of Jilin University, Jilin, China
| | - Jingrui Liu
- Phase I Clinical Research Center, the First Hospital of Jilin University, Jilin, China
| | - Xiaojiao Li
- Phase I Clinical Research Center, the First Hospital of Jilin University, Jilin, China
| | - Xiaoxue Zhu
- Phase I Clinical Research Center, the First Hospital of Jilin University, Jilin, China
| | - Cuiyun Li
- Phase I Clinical Research Center, the First Hospital of Jilin University, Jilin, China
| | - Hong Chen
- Phase I Clinical Research Center, the First Hospital of Jilin University, Jilin, China
| | - Chengjiao Liu
- Phase I Clinical Research Center, the First Hospital of Jilin University, Jilin, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Jilin, China
| | - Yanhua Ding
- Phase I Clinical Research Center, the First Hospital of Jilin University, Jilin, China
| |
Collapse
|