1
|
Hong T, Yang Y, Wang P, Zhu G, Zhu C. Pestiviruses infection: Interferon-virus mutual regulation. Front Cell Infect Microbiol 2023; 13:1146394. [PMID: 36936761 PMCID: PMC10018205 DOI: 10.3389/fcimb.2023.1146394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Pestiviruses are a class of viruses that in some cases can cause persistent infection of the host, thus posing a threat to the livestock industry. Interferons (IFNs) are a group of secreted proteins that play a crucial role in antiviral defense. In this review, on the one hand, we elaborate on how pestiviruses are recognized by the host retinoic acid-inducible gene-I (RIG-I), melanoma-differentiation-associated protein 5 (MDA5), and Toll-like receptor 3 (TLR3) proteins to induce the synthesis of IFNs. On the other hand, we focus on reviewing how pestiviruses antagonize the production of IFNs utilizing various strategies mediated by self-encoded proteins, such as the structural envelope protein (Erns) and non-structural protein (Npro). Hence, the IFN signal transduction pathway induced by pestiviruses infection and the process of pestiviruses blockade on the production of IFNs intertwines into an intricate regulatory network. By reviewing the interaction between IFN and pestiviruses (based on studies on BVDV and CSFV), we expect to provide a theoretical basis and reference for a better understanding of the mechanisms of induction and evasion of the innate immune response during infection with these viruses.
Collapse
Affiliation(s)
- Tianqi Hong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Pengzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Guoqiang Zhu, ; Congrui Zhu,
| | - Congrui Zhu
- College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Guoqiang Zhu, ; Congrui Zhu,
| |
Collapse
|
2
|
Ghafouri-Fard S, Honarmand Tamizkar K, Sayad A, Taheri M, Samadian M. Expression Analysis of SOCS Genes in Migraine. Front Mol Neurosci 2021; 14:725048. [PMID: 34646121 PMCID: PMC8502924 DOI: 10.3389/fnmol.2021.725048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Migraine is a complex neurological condition affecting a large proportion of persons. Dysregulation of several immune-related transcripts has been noted in migraineurs suggesting an immune-based background for this condition. We measured expression levels suppressor of cytokine signaling (SOCS) genes in the venous blood of migraineurs compared with controls. SOCS1 was down-regulated in patients without aura compared with controls [Ratio of mean expression (RME) = 0.08, P value < 0.001]. This pattern was also detected among female subgroups (RME = 0.06, P value = 0.010), but not among male subgroups (RME = 0.22, P value = 0.114). Expression of SOCS1 was significantly higher in patients with aura compared with those without aura (RME = 5.89, P value = 0.037). Meanwhile, expression of SOCS2 was lower in migraineurs with aura compared with controls (RME = 0.03, P value < 0.001). In addition, this gene was under-expressed in patients without aura compared with controls and in both sex-based subgroups of this group of patients (RME = 0.01, P value < 0.001 for all comparisons). However, its expression was higher in male patients with aura compared with those without aura (P value < 0.001). For SOCS3, we detected a lower level of expression in patients without aura compared with controls (RME = 0.07, P value < 0.001). However, the expression of SOCS3 was higher in patients with aura compared with those without aura (RME = 7.46, P value = 0.001). SOCS5 was down-regulated in patients without aura compared with controls (RME = 0.10, P value < 0.001). Expression of this gene was also lower in patients with aura compared with controls (RME = 0.03, P value < 0.001), and in male patients of this group compared with controls (RME = 0.03, P value = 0.004). On the other hand, expression of SOCS5 was higher in male patients with aura compared with sex-matched patients without aura (RME = 6.67, P value = 0.001). SOCS2 levels could appropriately differentiate migraineurs from healthy subjects. The current study suggests the role of SOCS genes in the pathoetiology of migraine.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand Tamizkar
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|