1
|
Wang X, Wu H, Fang C, Li Z. Insights into innate immune cell evasion by Chlamydia trachomatis. Front Immunol 2024; 15:1289644. [PMID: 38333214 PMCID: PMC10850350 DOI: 10.3389/fimmu.2024.1289644] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Chlamydia trachomatis, is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4+ Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather than CD8+ T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that C. trachomatis faces is the innate immune response. As the "sentry" of the body, mast cells attempt to engulf and remove C. trachomatis. Dendritic cells present antigen of C. trachomatis to the "commanders" (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body's "combat troops" and produce immunity against C. trachomatis in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of C. trachomatis. The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be insidious and recalcitrant. As a consequence, C. trachomatis has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how C. trachomatis evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of C. trachomatis infection.
Collapse
Affiliation(s)
| | | | | | - Zhongyu Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, School of Nursing, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
2
|
Peng Y, Qiao S, Wang H, Shekhar S, Wang S, Yang J, Fan Y, Yang X. Enhancement of Macrophage Immunity against Chlamydial Infection by Natural Killer T Cells. Cells 2024; 13:133. [PMID: 38247825 PMCID: PMC10813948 DOI: 10.3390/cells13020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Lung macrophage (LM) is vital in host defence against bacterial infections. However, the influence of other innate immune cells on its function, including the polarisation of different subpopulations, remains poorly understood. This study examined the polarisation of LM subpopulations (monocytes/undifferentiated macrophages (Mo/Mφ), interstitial macrophages (IM), and alveolar macrophages (AM)). We further assessed the effect of invariant natural killer T cells (iNKT) on LM polarisation in a protective function against Chlamydia muridarum, an obligate intracellular bacterium, and respiratory tract infection. We found a preferentially increased local Mo/Mφ and IMs with a significant shift to a type-1 macrophage (M1) phenotype and higher expression of iNOS and TNF-α. Interestingly, during the same infection, the alteration of macrophage subpopulations and the shift towards M1 was much less in iNKT KO mice. More importantly, functional testing by adoptively transferring LMs isolated from iNKT KO mice (iNKT KO-Mφ) conferred less protection than those isolated from wild-type mice (WT-Mφ). Further analyses showed significantly reduced gene expression of the JAK/STAT signalling pathway molecules in iNKT KO-Mφ. The data show an important role of iNKT in promoting LM polarisation to the M1 direction, which is functionally relevant to host defence against a human intracellular bacterial infection. The alteration of JAK/STAT signalling molecule gene expression in iNKT KO-Mφ suggests the modulating effect of iNKT is likely through the JAK/STAT pathway.
Collapse
Affiliation(s)
- Ying Peng
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Sai Qiao
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Hong Wang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Medical Microbiology, School of Medicine, Shandong University, Jinan 250100, China
| | - Sudhanshu Shekhar
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Shuhe Wang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jie Yang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Yijun Fan
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Xi Yang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|