1
|
Orsatti FL, de Queiroz Freitas AC, Borges AVBE, Santato AS, de Oliveira Assumpção C, Souza MVC, da Silva MV, Orsatti CL. Unveiling the role of exercise in modulating plasma heat shock protein 27 levels: insights for exercise immunology and cardiovascular health. Mol Cell Biochem 2025; 480:1381-1401. [PMID: 39172352 DOI: 10.1007/s11010-024-05089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Cardiovascular disease is one of the leading causes of mortality worldwide, primarily driven by atherosclerosis, a chronic inflammatory condition contributing significantly to fatalities. Various biological determinants affecting cardiovascular health across different age and sex groups have been identified. In this context, recent attention has focused on the potential therapeutic and preventive role of increasing circulating levels of heat shock protein 27 (plasma HSP27) in combating atherosclerosis. Plasma HSP27 is recognized for its protective function in inflammatory atherogenesis, offering promising avenues for intervention and management strategies against this prevalent cardiovascular ailment. Exercise has emerged as a pivotal strategy in preventing and managing cardiovascular disease, with literature indicating an increase in plasma HSP27 levels post-exercise. However, there is limited understanding of the impact of exercise on the release of HSP27 into circulation. Clarifying these aspects is crucial for understanding the role of exercise in modulating plasma HSP27 levels and its potential implications for cardiovascular health across diverse populations. Therefore, this review aims to establish a more comprehensive understanding of the relationship between plasma HSP27 and exercise.
Collapse
Affiliation(s)
- Fábio Lera Orsatti
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil.
| | - Augusto Corrêa de Queiroz Freitas
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Anna Victória Bernardes E Borges
- Department of Microbiology, Immunology, And Parasitology, Institute of Biological and Natural Sciences of Federal University of Triangulo Mineiro, Uberaba, MG, 38025-350, Brazil
| | - Alexia Souza Santato
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Claudio de Oliveira Assumpção
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Markus Vinicius Campos Souza
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology, And Parasitology, Institute of Biological and Natural Sciences of Federal University of Triangulo Mineiro, Uberaba, MG, 38025-350, Brazil
| | | |
Collapse
|
2
|
Ferlito JV, Rolnick N, Ferlito MV, De Marchi T, Deminice R, Salvador M. Acute effect of low-load resistance exercise with blood flow restriction on oxidative stress biomarkers: A systematic review and meta-analysis. PLoS One 2023; 18:e0283237. [PMID: 37083560 PMCID: PMC10121002 DOI: 10.1371/journal.pone.0283237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/03/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The purpose of this review was to analyze the acute effects of low-load resistance exercise with blood flow restriction (LLE-BFR) on oxidative stress markers in healthy individuals in comparison with LLE or high-load resistance exercise (HLRE) without BFR. MATERIALS AND METHODS A systematic review was performed in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. These searches were performed in CENTRAL, SPORTDiscus, EMBASE, PubMed, CINAHL and Virtual Health Library- VHL, which includes Lilacs, Medline and SciELO. The risk of bias and quality of evidence were assessed through the PEDro scale and GRADE system, respectively. RESULTS Thirteen randomized clinical trials were included in this review (total n = 158 subjects). Results showed lower post-exercise damage to lipids (SMD = -0.95 CI 95%: -1.49 to -0. 40, I2 = 0%, p = 0.0007), proteins (SMD = -1.39 CI 95%: -2.11 to -0.68, I2 = 51%, p = 0.0001) and redox imbalance (SMD = -0.96 CI 95%: -1.65 to -0.28, I2 = 0%, p = 0.006) in favor of LLRE-BFR compared to HLRE. HLRE presents higher post-exercise superoxide dismutase activity but in the other biomarkers and time points, no significant differences between conditions were observed. For LLRE-BFR and LLRE, we found no difference between the comparisons performed at any time point. CONCLUSIONS Based on the available evidence from randomized trials, providing very low or low certainty of evidence, this review demonstrates that LLRE-BFR promotes less oxidative stress when compared to HLRE but no difference in levels of oxidative damage biomarkers and endogenous antioxidants between LLRE. TRIAL REGISTRATION Register number: PROSPERO number: CRD42020183204.
Collapse
Affiliation(s)
- João Vitor Ferlito
- Oxidative Stress and Antioxidant Laboratory, Postgraduate Program in Biotechnology, University of Caxias Do Sul, Caxias do Sul, Brazil
| | - Nicholas Rolnick
- The Human Performance Mechanic, Lehman College, New York, NY, United States of America
| | - Marcos Vinicius Ferlito
- Oxidative Stress and Antioxidant Laboratory, Postgraduate Program in Biotechnology, University of Caxias Do Sul, Caxias do Sul, Brazil
| | - Thiago De Marchi
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Rafael Deminice
- Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Mirian Salvador
- Oxidative Stress and Antioxidant Laboratory, Postgraduate Program in Biotechnology, University of Caxias Do Sul, Caxias do Sul, Brazil
| |
Collapse
|
3
|
Krzysztofik M, Zygadło D, Trybek P, Jarosz J, Zając A, Rolnick N, Wilk M. Resistance Training with Blood Flow Restriction and Ocular Health: A Brief Review. J Clin Med 2022; 11:4881. [PMID: 36013119 PMCID: PMC9410392 DOI: 10.3390/jcm11164881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the many health benefits of resistance training, it has been suggested that high-intensity resistance exercise is associated with acute increases in intraocular pressure which is a significant risk factor for the development of glaucomatous optic nerve damage. Therefore, resistance training using a variety of forms (e.g., resistance bands, free weights, weight machines, and bodyweight) may be harmful to patients with or at risk of glaucoma. An appropriate solution for such people may involve the combination of resistance training and blood flow restriction (BFR). During the last decade, the BFR (a.k.a. occlusion or KAATSU training) method has drawn great interest among health and sports professionals because of the possibility for individuals to improve various areas of fitness and performance at lower exercise intensities. In comparison to studies evaluating the efficiency of BFR in terms of physical performance and body composition changes, there is still a paucity of empirical studies concerning safety, especially regarding ocular health. Although the use of BFR during resistance training seems feasible for glaucoma patients or those at risk of glaucoma, some issues must be investigated and resolved. Therefore, this review provides an overview of the available scientific data describing the influence of resistance training combined with BFR on ocular physiology and points to further directions of research.
Collapse
Affiliation(s)
- Michał Krzysztofik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland
| | - Dorota Zygadło
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Paulina Trybek
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Jakub Jarosz
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland
| | - Adam Zając
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland
| | - Nicholas Rolnick
- The Human Performance Mechanic, CUNY Lehman College, Bronx, New York, NY 10468, USA
| | - Michał Wilk
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland
| |
Collapse
|
4
|
Alpha B-Crystallin in Muscle Disease Prevention: The Role of Physical Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031147. [PMID: 35164412 PMCID: PMC8840510 DOI: 10.3390/molecules27031147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
HSPB5 or alpha B-crystallin (CRYAB), originally identified as lens protein, is one of the most widespread and represented of the human small heat shock proteins (sHSPs). It is greatly expressed in tissue with high rates of oxidative metabolism, such as skeletal and cardiac muscles, where HSPB5 dysfunction is associated with a plethora of human diseases. Since HSPB5 has a major role in protecting muscle tissues from the alterations of protein stability (i.e., microfilaments, microtubules, and intermediate filament components), it is not surprising that this sHSP is specifically modulated by exercise. Considering the robust content and the protective function of HSPB5 in striated muscle tissues, as well as its specific response to muscle contraction, it is then realistic to predict a specific role for exercise-induced modulation of HSPB5 in the prevention of muscle diseases caused by protein misfolding. After offering an overview of the current knowledge on HSPB5 structure and function in muscle, this review aims to introduce the reader to the capacity that different exercise modalities have to induce and/or activate HSPB5 to levels sufficient to confer protection, with the potential to prevent or delay skeletal and cardiac muscle disorders.
Collapse
|
5
|
GARCIA NÁDIAF, MORAES CAMILADE, REBELO MACÁRIOA, PETERS SAVANAHMARIAG, CASTRO FÁBIOMDE, PUGGINA ENRICOF. Strength training with and without arteriovenous blood flow restriction improves performance, regardless of changes in muscle hypertrophy, in Wistar rats. AN ACAD BRAS CIENC 2022; 94:e20201147. [DOI: 10.1590/0001-3765202220201147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/13/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | | | - ENRICO F. PUGGINA
- University of São Paulo (USP), Brazil; University of São Paulo (USP), Brazil
| |
Collapse
|
6
|
Bjørnsen T, Wernbom M, Paulsen G, Markworth JF, Berntsen S, D'Souza RF, Cameron-Smith D, Raastad T. High-frequency blood flow-restricted resistance exercise results in acute and prolonged cellular stress more pronounced in type I than in type II fibers. J Appl Physiol (1985) 2021; 131:643-660. [PMID: 33955259 DOI: 10.1152/japplphysiol.00115.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myocellular stress with high-frequency blood flow-restricted resistance exercise (BFRRE) was investigated by measures of heat shock protein (HSP) responses, glycogen content, and inflammatory markers. Thirteen participants [age: 24 ± 2 yr (means ± SD), 9 males] completed two 5-day blocks of seven BFRRE sessions, separated by 10 days. Four sets of unilateral knee extensions to failure at 20% of one-repetition maximum (1RM) were performed. Muscle samples obtained before, 1 h after the first session in the first and second block (acute 1 and acute 2), after three sessions (day 4), during the "rest week," and at 3 (post 3) and 10 days postintervention (post 10) were analyzed for HSP70, αB-crystallin, glycogen [periodic acid-Schiff (PAS) staining], mRNAs, miRNAs, and CD68+ (macrophages) and CD66b+ (neutrophils) cell numbers. αB-crystallin translocated from the cytosolic to the cytoskeletal fraction after acute 1 and acute 2 (P < 0.05) and immunostaining revealed larger responses in type I than in type II fibers (acute 1, 225 ± 184% vs. 92 ± 81%, respectively, P = 0.001). HSP70 was increased in the cytoskeletal fraction at day 4 and post 3, and immunostaining intensities were more elevated in type I than in type II fibers at day 4 (206 ± 84% vs. 72 ± 112%, respectively, P <0.001), during the rest week (98 ± 66% vs. 42 ± 79%, P < 0.001), and at post 3 (115 ± 82% vs. 28 ± 78%, P = 0.003). Glycogen content was reduced in both fiber types, but most pronounced in type I, which did not recover until the rest week (-15% to 29%, P ≤ 0.001). Intramuscular macrophage numbers were increased by ∼65% postintervention, but no changes were observed in muscle neutrophils. We conclude that high-frequency BFRRE with sets performed till failure stresses both fiber types, with type I fibers being most affected.NEW & NOTEWORTHY BFRRE has been reported to preferentially stress type I muscle fibers, as evidenced by HSP responses. We extend these findings by showing that the HSP responses occur in both fiber types but more so in type I fibers and that they can still be induced after a short-term training period. Furthermore, the reductions in glycogen content of type I fibers after strenuous frequent BFRRE in unaccustomed subjects can be prolonged (≥5 days), probably due to microdamage.
Collapse
Affiliation(s)
- Thomas Bjørnsen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway.,Norwegian Olympic Federation, Oslo, Norway
| | - Mathias Wernbom
- Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,The Rydberg Laboratory for Applied Sciences, Halmstad University, Halmstad, Sweden.,Department of Food and Nutrition, and Sport Science, Center for Health and Performance, University of Gothenburg, Göteborg, Sweden
| | - Gøran Paulsen
- Norwegian Olympic Federation, Oslo, Norway.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | - Sveinung Berntsen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Randall F D'Souza
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore.,Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
7
|
Muscular HSP70 content is higher in elderly compared to young, but is normalized after 12 weeks of strength training. Eur J Appl Physiol 2021; 121:1689-1699. [PMID: 33677694 PMCID: PMC8144120 DOI: 10.1007/s00421-021-04633-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
Purpose Aging is associated with increased myocellular stress and loss of muscle mass and function. Heat shock proteins (HSPs) are upregulated during periods of stress as part of the cells protective system. Exercise can affect both acute HSP regulation and when repeated regularly counteract unhealthy age-related changes in the muscle. Few studies have investigated effects of exercise on HSP content in elderly. The aim of the study was to compare muscular HSP levels in young and elderly and to investigate how training affects HSP content in muscles from aged males and females. Methods Thirty-eight elderly were randomized to 12 weeks of strength training (STG), functional strength training (FTG) or a control group (C). To compare elderly to young, 13 untrained young performed 11 weeks of strength training (Y). Muscle biopsies were collected before and after the intervention and analyzed for HSP27, αB-crystallin and HSP70. Results Baseline HSP70 were 35% higher in elderly than in young, whereas there were no differences between young and elderly in HSP27 or αB-crystallin. After the training intervention, HSP70 were reduced in STG (− 33 ± 32%; P = 0.001) and FTG (− 28 ± 30%; P = 0.012). The decrease in HSP70 was more pronounced in the oldest. In contrast, Y increased HSP27 (134 ± 1%; P < 0.001) and αB-crystallin (84 ± 94%; P = 0.008). Conclusion Twelve weeks of STG or FTG decreased the initial high levels of HSP70 in aged muscles. Thus, regular strength training can normalize some of the increases in cellular stress associated with normal aging, and lead to a healthier cellular environment in aged muscle cells. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-021-04633-4.
Collapse
|
8
|
Jacko D, Bersiner K, Schulz O, Przyklenk A, Spahiu F, Höhfeld J, Bloch W, Gehlert S. Coordinated alpha-crystallin B phosphorylation and desmin expression indicate adaptation and deadaptation to resistance exercise-induced loading in human skeletal muscle. Am J Physiol Cell Physiol 2020; 319:C300-C312. [PMID: 32520607 DOI: 10.1152/ajpcell.00087.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Skeletal muscle is a target of contraction-induced loading (CiL), leading to protein unfolding or cellular perturbations, respectively. While cytoskeletal desmin is responsible for ongoing structural stabilization, in the immediate response to CiL, alpha-crystallin B (CRYAB) is phosphorylated at serine 59 (pCRYABS59) by P38, acutely protecting the cytoskeleton. To reveal adaptation and deadaptation of these myofibrillar subsystems to CiL, we examined CRYAB, P38, and desmin regulation following resistance exercise at diverse time points of a chronic training period. Mechanosensitive JNK phosphorylation (pJNKT183/Y185) was determined to indicate the presence of mechanical components in CiL. Within 6 wk, subjects performed 13 resistance exercise bouts at the 8-12 repetition maximum, followed by 10 days detraining and a final 14th bout. Biopsies were taken at baseline and after the 1st, 3rd, 7th, 10th, 13th, and 14th bout. To assess whether potential desensitization to CiL can be mitigated, one group trained with progressive and a second with constant loading. As no group differences were found, all subjects were combined for statistics. Total and phosphorylated P38 was not regulated over the time course. pCRYABS59 and pJNKT183/Y185 strongly increased following the unaccustomed first bout. This exercise-induced pCRYABS59/pJNKT183/Y185 increase disappeared with the 10th until 13th bout. As response to the detraining period, the 14th bout led to a renewed increase in pCRYABS59. Desmin content followed pCRYABS59 inversely, i.e., was up- when pCRYABS59 was downregulated and vice versa. In conclusion, the pCRYABS59 response indicates increase and decrease in resistance to CiL, in which a reinforced desmin network could play an essential role by structurally stabilizing the cells.
Collapse
Affiliation(s)
- Daniel Jacko
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany.,Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Käthe Bersiner
- Department for Biosciences of Sports, Institute for Sports Sciences, University of Hildesheim, Hildesheim, Germany
| | - Oliver Schulz
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Axel Przyklenk
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Fabian Spahiu
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sebastian Gehlert
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany.,Department for Biosciences of Sports, Institute for Sports Sciences, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
9
|
Jacko D, Bersiner K, Hebchen J, de Marées M, Bloch W, Gehlert S. Phosphorylation of αB-crystallin and its cytoskeleton association differs in skeletal myofiber types depending on resistance exercise intensity and volume. J Appl Physiol (1985) 2019; 126:1607-1618. [PMID: 30920888 DOI: 10.1152/japplphysiol.01038.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
αB-crystallin (CRYAB) is an important actor in the immediate cell stabilizing response following mechanical stress in skeletal muscle. Yet, only little is known regarding myofiber type-specific stress responses of CRYAB. We investigated whether the phosphorylation of CRYAB at serine 59 (pCRYABSer59) and its cytoskeleton association are influenced by varying load-intensity and -volume in a fiber type-specific manner. Male subjects were assigned to 1, 5, and 10 sets of different acute resistance exercise protocols: hypertrophy (HYP), maximum strength (MAX), strength endurance (SE), low intensity (LI), and three sets of maximum eccentric resistance exercise (ECC). Skeletal muscle biopsies were taken at baseline and 30 min after exercise. Western blot revealed an increase in pCRYABSer59 only following 5 and 10 sets in groups HYP, MAX, SE, and LI as well as following 3 sets in the ECC group. In type I fibers, immunohistochemistry determined increased pCRYABSer59 in all groups. In type II fibers, pCRYABSer59 only increased in MAX and ECC groups, with the increase in type II fibers exceeding that of type I fibers in ECC. Association of CRYAB and pCRYABSer59 with the cytoskeleton reflected the fiber type-specific phosphorylation pattern. Phosphorylation of CRYAB and its association with the cytoskeleton in type I and II myofibers is highly specific in terms of loading intensity and volume. Most likely, this is based on specific recruitment patterns of the different myofiber entities due to the different resistance exercise loadings. We conclude that pCRYABSer59 indicates contraction-induced mechanical stress exposure of single myofibers in consequence of resistance exercise. NEW & NOTEWORTHY We determined that the phosphorylation of αB-crystallin at serine 59 (pCRYABSer59) after resistance exercise differs between myofiber types in a load- and intensity-dependent manner. The determination of pCRYABSer59 could serve as a marker indirectly indicating contractile involvement and applied mechanical stress on individual fibers. By that, it is possible to retrospectively assess the impact of resistance exercise loading on skeletal muscle fiber entities.
Collapse
Affiliation(s)
- Daniel Jacko
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne , Cologne , Germany.,Olympic Base Center Rhineland , Cologne , Germany
| | - Käthe Bersiner
- Institute of Sport Science, University of Hildesheim , Hildesheim , Germany
| | - Jonas Hebchen
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne , Cologne , Germany
| | - Markus de Marées
- Section of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr University of Bochum , Bochum , Germany
| | - Wilhelm Bloch
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne , Cologne , Germany
| | - Sebastian Gehlert
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne , Cologne , Germany.,Institute of Sport Science, University of Hildesheim , Hildesheim , Germany
| |
Collapse
|
10
|
Sieljacks P, Degn R, Hollaender K, Wernbom M, Vissing K. Non-failure blood flow restricted exercise induces similar muscle adaptations and less discomfort than failure protocols. Scand J Med Sci Sports 2018; 29:336-347. [DOI: 10.1111/sms.13346] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Peter Sieljacks
- Section for Sports Science, Department of Public Health; Aarhus University; Aarhus Denmark
| | - Rune Degn
- Section for Sports Science, Department of Public Health; Aarhus University; Aarhus Denmark
| | - Kasper Hollaender
- Section for Sports Science, Department of Public Health; Aarhus University; Aarhus Denmark
| | - Mathias Wernbom
- Center for Health and Performance, Department of Food and Nutrition and Sport Science; University of Gothenburg; Gothenburg Sweden
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology; University of Gothenburg; Gothenburg Sweden
| | - Kristian Vissing
- Section for Sports Science, Department of Public Health; Aarhus University; Aarhus Denmark
| |
Collapse
|