1
|
Wang X, Lai B, Yan R, Li Y, Ning B, Wang Q. Enhancing physiological recovery and subsequent exercise performance in the heat using a phase-change material cooling blanket. J Therm Biol 2024; 119:103810. [PMID: 38350267 DOI: 10.1016/j.jtherbio.2024.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/24/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
This study aimed to assess the effect of a phase-change material (PCM) cooling blanket for cooling between exercise bouts on recovery of physiological parameters and subsequent exercise performance in the heat. Eighteen male volunteers were recruited to participate in human trials involving two exhaustive treadmill running bouts (Bout1 for 3 km and Bout2 for 1.5 km) in a climate chamber (temperature = 33 °C; relative humidity = 40%). Participants were randomly subjected to one of two cooling conditions for a 10-min period between exercise bouts: CON: natural cooling; 10-min PCM: with a PCM cooling blanket for 10 min. Several physiological parameters including mean skin temperature (Tskin), oral temperature (Toral), core temperature (Tcore), heart rate (HR), mean arterial pressure (MAP), respiratory rate (RR), peripheral capillary oxygen saturation (SpO2), average running speed and rating of perceived exertion (RPE) scale score were analyzed. The results showed that compared to the CON group, participants in the 10-min PCM group had a significant lower Tskin, Tcore, HR and RR at post-cooling, as well as greater reductions in mean skin temperature (ΔTskin) and core temperature (ΔTcore) from post-Bout1 to post-cooling. Additionally, the 10-min PCM group exhibited significantly lower peak Tcore, peak HR and RPE scale score during Bout2, while the average running speed during Bout2 was significantly higher. The present study suggests that cooling with a PCM cooling blanket can enhance physiological recovery and subsequent exercise performance in the heat.
Collapse
Affiliation(s)
- Xin Wang
- Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, No.8 of East Street, Beijing, 100071, China
| | - Bin Lai
- Department of Emergency Medicine, The Third Medical Center of Chinese PLA General Hospital, No.69 of Yongding Road, Beijing, 100039, China
| | - Rui Yan
- Department of Thoracic Surgery, The Third Medical Center of Chinese PLA General Hospital, No.69 of Yongding Road, Beijing, 100039, China
| | - Yan Li
- Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, No.8 of East Street, Beijing, 100071, China
| | - Bo Ning
- Department of Intensive Care Unit, Air Force Medical Center of China, No.30 of Fucheng Road, Beijing, 100142, China.
| | - Qian Wang
- Department of Emergency Medicine, The Third Medical Center of Chinese PLA General Hospital, No.69 of Yongding Road, Beijing, 100039, China.
| |
Collapse
|
2
|
Bester R, Stander Z, Mason S, Keane KM, Howatson G, Clifford T, Stevenson EJ, Loots DT. The metabolic recovery of marathon runners: an untargeted 1H-NMR metabolomics perspective. Front Physiol 2023; 14:1117687. [PMID: 37215177 PMCID: PMC10192615 DOI: 10.3389/fphys.2023.1117687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Extreme endurance events may result in numerous adverse metabolic, immunologic, and physiological perturbations that may diminish athletic performance and adversely affect the overall health status of an athlete, especially in the absence of sufficient recovery. A comprehensive understanding of the post-marathon recovering metabolome, may aid in the identification of new biomarkers associated with marathon-induced stress, recovery, and adaptation, which can facilitate the development of improved training and recovery programs and personalized monitoring of athletic health/recovery/performance. Nevertheless, an untargeted, multi-disciplinary elucidation of the complex underlying biochemical mechanisms involved in recovery after such an endurance event is yet to be demonstrated. Methods: This investigation employed an untargeted proton nuclear magnetic resonance metabolomics approach to characterize the post-marathon recovering metabolome by systematically comparing the pre-, immediately post, 24, and 48 h post-marathon serum metabolite profiles of 15 athletes. Results and Discussion: A total of 26 metabolites were identified to fluctuate significantly among post-marathon and recovery time points and were mainly attributed to the recovery of adenosine triphosphate, redox balance and glycogen stores, amino acid oxidation, changes to gut microbiota, and energy drink consumption during the post-marathon recovery phase. Additionally, metabolites associated with delayed-onset muscle soreness were observed; however, the mechanisms underlying this commonly reported phenomenon remain to be elucidated. Although complete metabolic recovery of the energy-producing pathways and fuel substrate stores was attained within the 48 h recovery period, several metabolites remained perturbed throughout the 48 h recovery period and/or fluctuated again following their initial recovery to pre-marathon-related levels.
Collapse
Affiliation(s)
- Rachelle Bester
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Zinandré Stander
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Karen M. Keane
- Department of Sport Exercise and Nutrition, School of Science and Computing, Atlantic Technological University, Galway, Ireland
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, South Africa
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Emma J. Stevenson
- Human and Exercise Nutrition Research Centre, School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Du Toit Loots
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Hernando C, Hernando C, Panizo N, Collado-Boira E, Folch-Ayora A, Martínez-Navarro I, Hernando B. Renal Function Recovery Strategies Following Marathon in Amateur Runners. Front Physiol 2022; 13:812237. [PMID: 35295572 PMCID: PMC8918951 DOI: 10.3389/fphys.2022.812237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Long distance races have a physiological impact on runners. Up to now, studies analyzing these physiological repercussions have been mainly focused on muscle and cardiac damage, as well as on its recovery. Therefore, a limited number of studies have been done to explore acute kidney failure and recovery after performing extreme exercises. Here, we monitored renal function in 76 marathon finishers (14 females) from the day before participating in a marathon until 192 h after crossing the finish line (FL). Renal function was evaluated by measuring serum creatinine (sCr) and the glomerular filtration rate (GFR). We randomly grouped our cohort into three intervention groups to compare three different strategies for marathon recovery: total rest (REST), continuous running at their ventilatory threshold 1 (VT1) intensity (RUN), and elliptical workout at their VT1 intensity (ELLIPTICAL). Interventions in the RUN and ELLIPTICAL groups were performed at 48, 96, and 144 h after marathon running. Seven blood samples (at the day before the marathon, at the FL, and at 24, 48, 96, 144, and 192 h post-marathon) and three urine samples (at the day before the marathon, at the finish line, and at 48 h post-marathon) were collected per participant. Both heart rate monitors and triaxial accelerometers were used to control the intensity effort during both the marathon race and the recovery period. Contrary to our expectations, the use of elliptical machines for marathon recovery delays renal function recovery. Specifically, the ELLIPTICAL group showed a significantly lower ∆GFR compared to both the RUN group (p = 4.5 × 10−4) and the REST group (p = 0.003). Hence, we encourage runners to carry out an active recovery based on light-intensity continuous running from 48 h after finishing the marathon. In addition, full resting seems to be a better strategy than performing elliptical workouts.
Collapse
Affiliation(s)
- Carlos Hernando
- Sport Service, Jaume I University, Castellon, Spain
- Department of Education and Specific Didactics, Jaume I University, Castellon, Spain
- *Correspondence: Carlos Hernando,
| | - Carla Hernando
- Department of Mathematics, Carlos III University of Madrid, Madrid, Spain
| | - Nayara Panizo
- Nephrology Service, University Clinical Hospital of Valencia, Valencia, Spain
| | | | - Ana Folch-Ayora
- Faculty of Health Sciences, Jaume I University, Castellon, Spain
| | - Ignacio Martínez-Navarro
- Department of Physical Education and Sport, University of Valencia, Valencia, Spain
- Sports Health Unit, Vithas-Nisa 9 de Octubre Hospital, Valencia, Spain
| | | |
Collapse
|
4
|
Cold for centuries: a brief history of cryotherapies to improve health, injury and post-exercise recovery. Eur J Appl Physiol 2022; 122:1153-1162. [PMID: 35195747 PMCID: PMC9012715 DOI: 10.1007/s00421-022-04915-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/15/2022] [Indexed: 01/01/2023]
Abstract
For centuries, cold temperatures have been used by humans for therapeutic, health and sporting recovery purposes. This application of cold for therapeutic purposes is regularly referred to as cryotherapy. Cryotherapies including ice, cold-water and cold air have been popularised by an ability to remove heat, reduce core and tissue temperatures, and alter blood flow in humans. The resulting downstream effects upon human physiologies providing benefits that include a reduced perception of pain, or analgesia, and an improved sensation of well-being. Ultimately, such benefits have been translated into therapies that may assist in improving post-exercise recovery, with further investigations assessing the role that cryotherapies can play in attenuating the ensuing post-exercise inflammatory response. Whilst considerable progress has been made in our understanding of the mechanistic changes associated with adopting cryotherapies, research focus tends to look towards the future rather than to the past. It has been suggested that this might be due to the notion of progress being defined as change over time from lower to higher states of knowledge. However, a historical perspective, studying a subject in light of its earliest phase and subsequent evolution, could help sharpen one's vision of the present; helping to generate new research questions as well as look at old questions in new ways. Therefore, the aim of this brief historical perspective is to highlight the origins of the many arms of this popular recovery and treatment technique, whilst further assessing the changing face of cryotherapy. We conclude by discussing what lies ahead in the future for cold-application techniques.
Collapse
|
5
|
Mur-Gimeno E, Sebio-Garcia R, Solé J, Lleida A, Moras G. Short-term effects of two different recovery strategies on muscle contractile properties in healthy active men: A randomised cross-over study. J Sports Sci 2021; 40:646-654. [PMID: 34852731 DOI: 10.1080/02640414.2021.2010978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was to compare the immediate effects of cold-water immersion (CWI) and hot-water immersion (HWI) versus passive resting after a fatigue-induced bout of exercise on the muscle contractile properties of the Vastus Medialis (VM). We conducted a randomised cross-over study involving 28 healthy active men where muscle contractile properties of the VM wer recorded using Tensiomyography (TMG) before and after CWI, HWI or passive resting and up to one-hour post-application. The main outcomes obtained were muscle displacement and velocity of deformation according to limb size (Dmr and Vdr). Our results showed a significant effect of time (F(3.9,405) =32.439; p <0.001; η2p =0.29) and the interaction between time and temperature (F(7.9,405) =5.814; p <0.001; η2p=0.13) on Dmr but no for temperature alone (F(2,81) =2.013; p =0.14; η2p=0.04) while for Vdr, both time (F(5.2,486) =23.068; p <0.001 η2p = 0.22) and temperature (F(2,81) =4.219; p = 0.018; η2p= 0.09) as well as the interaction (F(10.4,486) =7.784; p <0.001; η2p =0.16) were found significant. Compared to CWI, HWI increased Dmr post-application and Vdr both post-application as well as 15 and 45' thereafter. These findings suggest that applying HWI could be a valid alternative to CWI to promote muscle recovery.
Collapse
Affiliation(s)
- Esther Mur-Gimeno
- School of Health Sciences TecnoCampus, University Pompeu Fabra, Mataró, Spain.,Research Group in Attention to Chronicity and Innovation in Health (GRACIS), University Pompeu Fabra, Mataró, Spain
| | - Raquel Sebio-Garcia
- Research Group in Attention to Chronicity and Innovation in Health (GRACIS), University Pompeu Fabra, Mataró, Spain.,Department of Rehabilitation, Hospital Clínic, de Barcelona, Barcelona, Spain
| | - Joan Solé
- High Performance Department, National Institute of Physical Education. Barcelona, Spain
| | - Agustín Lleida
- Team Technical Staff, Liga Deportiva Alajuelense, Alajuela, Costa Rica
| | - Gerard Moras
- High Performance Department, National Institute of Physical Education. Barcelona, Spain
| |
Collapse
|
6
|
Thorpe RT. Post-exercise Recovery: Cooling and Heating, a Periodized Approach. Front Sports Act Living 2021; 3:707503. [PMID: 34541521 PMCID: PMC8440788 DOI: 10.3389/fspor.2021.707503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Affiliation(s)
- Robin T Thorpe
- Football Exchange, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
7
|
Kwiecien SY, McHugh MP. The cold truth: the role of cryotherapy in the treatment of injury and recovery from exercise. Eur J Appl Physiol 2021; 121:2125-2142. [PMID: 33877402 DOI: 10.1007/s00421-021-04683-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/05/2021] [Indexed: 01/08/2023]
Abstract
Cryotherapy is utilized as a physical intervention in the treatment of injury and exercise recovery. Traditionally, ice is used in the treatment of musculoskeletal injury while cold water immersion or whole-body cryotherapy is used for recovery from exercise. In humans, the primary benefit of traditional cryotherapy is reduced pain following injury or soreness following exercise. Cryotherapy-induced reductions in metabolism, inflammation, and tissue damage have been demonstrated in animal models of muscle injury; however, comparable evidence in humans is lacking. This absence is likely due to the inadequate duration of application of traditional cryotherapy modalities. Traditional cryotherapy application must be repeated to overcome this limitation. Recently, the novel application of cooling with 15 °C phase change material (PCM), has been administered for 3-6 h with success following exercise. Although evidence suggests that chronic use of cryotherapy during resistance training blunts the anabolic training effect, recovery using PCM does not compromise acute adaptation. Therefore, following exercise, cryotherapy is indicated when rapid recovery is required between exercise bouts, as opposed to after routine training. Ultimately, the effectiveness of cryotherapy as a recovery modality is dependent upon its ability to maintain a reduction in muscle temperature and on the timing of treatment with respect to when the injury occurred, or the exercise ceased. Therefore, to limit the proliferation of secondary tissue damage that occurs in the hours after an injury or a strenuous exercise bout, it is imperative that cryotherapy be applied in abundance within the first few hours of structural damage.
Collapse
Affiliation(s)
- Susan Y Kwiecien
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY, USA.
| | - Malachy P McHugh
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY, USA
| |
Collapse
|