1
|
Martinez-Canton M, Galvan-Alvarez V, Martin-Rincon M, Calbet JAL, Gallego-Selles A. Unlocking peak performance: The role of Nrf2 in enhancing exercise outcomes and training adaptation in humans. Free Radic Biol Med 2024; 224:168-181. [PMID: 39151836 DOI: 10.1016/j.freeradbiomed.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Since the discovery of the nuclear factor erythroid-derived 2-like 2 (Nrf2) transcription factor thirty years ago, it has been shown that it regulates more than 250 genes involved in a multitude of biological processes, including redox balance, mitochondrial biogenesis, metabolism, detoxification, cytoprotection, inflammation, immunity, autophagy, cell differentiation, and xenobiotic metabolism. In skeletal muscle, Nrf2 signalling is primarily activated in response to perturbation of redox balance by reactive oxygen species or electrophiles. Initial investigations into human skeletal muscle Nrf2 responses to exercise, dating back roughly a decade, have consistently indicated that exercise-induced ROS production stimulates Nrf2 signalling. Notably, recent studies employing Nrf2 knockout mice have revealed impaired skeletal muscle contractile function characterised by reduced force output and increased fatigue susceptibility compared to wild-type counterparts. These deficiencies partially stem from diminished basal mitochondrial respiratory capacity and an impaired capacity to upregulate specific mitochondrial proteins in response to training, findings corroborated by inducible muscle-specific Nrf2 knockout models. In humans, baseline Nrf2 expression in skeletal muscle correlates with maximal oxygen uptake and high-intensity exercise performance. This manuscript delves into the mechanisms underpinning Nrf2 signalling in response to acute exercise in human skeletal muscle, highlighting the involvement of ROS, antioxidants and Keap1/Nrf2 signalling in exercise performance. Furthermore, it explores Nrf2's role in mediating adaptations to chronic exercise and its impact on overall exercise performance. Additionally, the influence of diet and certain supplements on basal Nrf2 expression and its role in modulating acute and chronic exercise responses are briefly addressed.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada.
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
2
|
Gonçalves B, Aires A, Oliveira I, Baltazar M, Cosme F, Afonso S, Pinto T, Anjos MR, Inês A, Morais MC, Vilela A, Silva AP. From Orchard to Wellness: Unveiling the Health Effects of Sweet Cherry Nutrients. Nutrients 2024; 16:3660. [PMID: 39519493 PMCID: PMC11547742 DOI: 10.3390/nu16213660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
This review paper explores the multifaceted relationship between sweet cherry nutrients and human health, aiming to uncover the comprehensive impact of these bioactive compounds from orchard to wellness. Furthermore, it highlights how advanced crop techniques can be pivotal in optimizing these beneficial compounds. Synthesizing existing literature, the paper examines the diverse bioactive nutrients in sweet cherries, including antioxidants, polyphenols, vitamins, and minerals, and elucidating their mechanisms of action and potential health benefits. From antioxidant properties to anti-inflammatory effects, the paper elucidates how these nutrients may mitigate chronic diseases such as cardiovascular disorders, diabetes, and neurodegenerative conditions. Additionally, it explores their role in promoting gastrointestinal health, enhancing exercise recovery, and modulating sleep patterns. The review discusses emerging research on the potential anti-cancer properties of sweet cherry compounds, highlighting their promising role in cancer prevention and treatment. Furthermore, it delves into the impact of sweet cherry consumption on metabolic health, weight management, and skin health. By providing a comprehensive overview of the current understanding of sweet cherry nutrients and their health effects, this paper offers valuable insights for researchers, healthcare professionals, and consumers interested in utilizing nature's bounty for holistic wellness.
Collapse
Affiliation(s)
- Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Miguel Baltazar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Teresa Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Maria Rosário Anjos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - António Inês
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Ana Paula Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| |
Collapse
|
3
|
Difranco I, Cockburn E, Dimitriou L, Paice K, Sinclair S, Faki T, Hills FA, Gondek MB, Wood A, Wilson LJ. A combination of cherry juice and cold water immersion does not enhance marathon recovery compared to either treatment in isolation: A randomized placebo-controlled trial. Front Sports Act Living 2022; 4:957950. [PMID: 36060624 PMCID: PMC9437358 DOI: 10.3389/fspor.2022.957950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Cherry juice (CJ) and cold water immersion (CWI) are both effective recovery strategies following strenuous endurance exercise. However, athletes routinely combine recovery interventions and less is known about the impact of a combined CJ and CWI protocol. Therefore, this study investigated the effects of combining CWI and CJ (a “cocktail” (CT)) on inflammation and muscle damage following a marathon. Methods A total 39 endurance trained males were randomly assigned to a placebo (PL), CWI, CJ, or CT group before completing a trail marathon run. Muscle damage (creatine kinase (CK)), muscle function (maximal voluntary isometric contraction (MVIC)), and inflammation (interleukin-6 (IL-6); C-reactive protein (CRP)) were measured at baseline, immediately after marathon (only IL-6), 24 h, and 48 h after marathon. Results There were no statistically significant differences between groups and no group × time interaction effects for any of the dependent variables. Confidence intervals (CI) illustrated that CT had unclear effects on inflammation (IL-6; CRP) and MVIC, but may have increased CK to a greater extent than PL and CJ conditions. Conclusion There is no evidence of an additive effect of CJ and CWI when the treatments are used in conjunction with each other. On the contrary, combining CJ and CWI may result in slightly increased circulating CK.
Collapse
Affiliation(s)
- Isabella Difranco
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emma Cockburn
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lygeri Dimitriou
- Department of Natural Sciences, Middlesex University, London, United Kingdom
- London Sports Institute, Middlesex University, London, United Kingdom
| | - Katherine Paice
- London Sports Institute, Middlesex University, London, United Kingdom
| | - Scott Sinclair
- London Sports Institute, Middlesex University, London, United Kingdom
- Faculty of Dance, Trinity Laban Conservatoire of Music and Dance, London, United Kingdom
| | - Tanwir Faki
- London Sports Institute, Middlesex University, London, United Kingdom
| | - Frank A. Hills
- Department of Natural Sciences, Middlesex University, London, United Kingdom
| | - Marcela B. Gondek
- Department of Natural Sciences, Middlesex University, London, United Kingdom
| | - Alyssa Wood
- London Sports Institute, Middlesex University, London, United Kingdom
| | - Laura J. Wilson
- London Sports Institute, Middlesex University, London, United Kingdom
- *Correspondence: Laura J. Wilson
| |
Collapse
|