1
|
Fijak M, Hasan H, Meinhardt A. Galectin-1 and galectin-3 in male reproduction - impact in health and disease. Semin Immunopathol 2025; 47:6. [PMID: 39792160 PMCID: PMC11723847 DOI: 10.1007/s00281-024-01032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The formation and differentiation of mature, motile male germ cells, which can fertilize the egg and ensure successful implantation and development of a healthy embryo, are essential functions of the testis and epididymis. Spermatogenesis is a complex, multistep process that results in the formation of motile haploid gametes, requiring an immunoregulatory environment to maintain tolerance to developing neo-antigens. Different cell types (Sertoli cells, macrophages), immunoregulatory factors and tolerance mechanisms are involved. In this context, possible effects of galectins on the immunoregulatory functions and fertilization ability of male germ cells are postulated. Galectins are pleiotropic lectins involved in the homeostasis, modulation of immune responses and pathological processes. Despite the well-recognized role of galectins in female reproduction, the functions of galectins in the male reproductive organs, particularly the testis and epididymis, remain largely unexplored. Among the galectins, galectin-1 and galectin-3 are the best-studied in these organs. This review summarizes the current knowledge of the cellular expression and the roles of galectin-1 and galectin-3 in testis and epididymis and discusses their functions in spermatogenesis, steroidogenesis, epididymal maturation of spermatozoa and inflammatory response.
Collapse
Affiliation(s)
- Monika Fijak
- Institute of Anatomy and Cell Biology, Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Aulweg 123, 35392, Giessen, Germany.
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Aulweg 123, 35392, Giessen, Germany
| |
Collapse
|
2
|
Qian J, Nunez S, Kim S, Reilly MP, Foulkes AS. A score test for genetic class-level association with nonlinear biomarker trajectories. Stat Med 2017; 36:3075-3091. [PMID: 28543585 DOI: 10.1002/sim.7314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/12/2017] [Accepted: 03/22/2017] [Indexed: 11/06/2022]
Abstract
Emerging data suggest that the genetic regulation of the biological response to inflammatory stress may be fundamentally different to the genetic underpinning of the homeostatic control (resting state) of the same biological measures. In this paper, we interrogate this hypothesis using a single-SNP score test and a novel class-level testing strategy to characterize protein-coding gene and regulatory element-level associations with longitudinal biomarker trajectories in response to stimulus. Using the proposed class-level association score statistic for longitudinal data, which accounts for correlations induced by linkage disequilibrium, the genetic underpinnings of evoked dynamic changes in repeatedly measured biomarkers are investigated. The proposed method is applied to data on two biomarkers arising from the Genetics of Evoked Responses to Niacin and Endotoxemia study, a National Institutes of Health-sponsored investigation of the genomics of inflammatory and metabolic responses during low-grade endotoxemia. Our results suggest that the genetic basis of evoked inflammatory response is different than the genetic contributors to resting state, and several potentially novel loci are identified. A simulation study demonstrates appropriate control of type-1 error rates, relative computational efficiency, and power. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jing Qian
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA, U.S.A
| | - Sara Nunez
- Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA, U.S.A
| | - Soohyun Kim
- Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA, U.S.A
| | | | - Andrea S Foulkes
- Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA, U.S.A
| |
Collapse
|
3
|
Lozano F, Martínez-Florensa M. Commentary: The Scavenger Receptor SSc5D Physically Interacts with Bacteria through the SRCR-Containing N-Terminal Domain. Front Immunol 2017; 8:366. [PMID: 28396672 PMCID: PMC5366910 DOI: 10.3389/fimmu.2017.00366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/14/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Francisco Lozano
- Grup d’Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d’Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultat de Medicina, Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Francisco Lozano,
| | - Mario Martínez-Florensa
- Grup d’Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
4
|
Bessa Pereira C, Bocková M, Santos RF, Santos AM, Martins de Araújo M, Oliveira L, Homola J, Carmo AM. The Scavenger Receptor SSc5D Physically Interacts with Bacteria through the SRCR-Containing N-Terminal Domain. Front Immunol 2016; 7:416. [PMID: 27790215 PMCID: PMC5061727 DOI: 10.3389/fimmu.2016.00416] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/26/2016] [Indexed: 01/26/2023] Open
Abstract
The scavenger receptor cysteine-rich (SRCR) family comprises a group of membrane-attached or secreted proteins that contain one or more modules/domains structurally similar to the membrane distal domain of type I macrophage scavenger receptor. Although no all-inclusive biological function has been ascribed to the SRCR family, some of these receptors have been shown to recognize pathogen-associated molecular patterns (PAMP) of bacteria, fungi, or other microbes. SSc5D is a recently described soluble SRCR receptor produced by monocytes/macrophages and T lymphocytes, consisting of an N-terminal portion, which contains five SRCR modules, and a large C-terminal mucin-like domain. Toward establishing a global common role for SRCR domains, we interrogated whether the set of five SRCR domains of SSc5D displayed pattern recognition receptor (PRR) properties. For that purpose, we have expressed in a mammalian expression system the N-terminal SRCR-containing moiety of SSc5D (N-SSc5D), thus excluding the mucin-like domain likely by nature to bind microorganisms, and tested the capacity of the SRCR functional groups to physically interact with bacteria. Using conventional protein–bacteria binding assays, we showed that N-SSc5D had a superior capacity to bind to Escherichia coli strains RS218 and IHE3034 compared with that of the extracellular domains of the SRCR proteins CD5 and CD6 (sCD5 and sCD6, respectively), and similar E. coli-binding properties as Spα, a proven PRR of the SRCR family. We have further designed a more sensitive, real-time, and label-free surface plasmon resonance (SPR)-based assay and examined the capacity of N-SSc5D, Spα, sCD5, and sCD6 to bind to different bacteria. We demonstrated that N-SSc5D compares with Spα in the capacity to bind to E. coli and Listeria monocytogenes, and further that it can distinguish between pathogenic E. coli RS218 and IHE3034 strains and the non-pathogenic laboratory E. coli strain BL21(DE3). Our work thus advocates the utility of SPR-based assays as sensitive tools for the rapid screening of interactions between immune-related receptors and PAMP-bearing microbes. The analysis of our results suggests that SRCR domains of different members of the family have a differential capacity to interact with bacteria, and further that the same receptor can discriminate between different bacteria strains and species.
Collapse
Affiliation(s)
- Catarina Bessa Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Markéta Bocková
- Institute of Photonics and Electronics of the Czech Academy of Sciences , Prague , Czech Republic
| | - Rita F Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Ana Mafalda Santos
- MRC Human Immunology Unit, Nuffield Department of Clinical Medicine, Weatherall Institute of Molecular Medicine, University of Oxford , Oxford , UK
| | - Mafalda Martins de Araújo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Liliana Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences , Prague , Czech Republic
| | - Alexandre M Carmo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Roy A, Al-bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 2015; 10:305-24. [PMID: 25632105 DOI: 10.2215/cjn.08880914] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule.
Collapse
Affiliation(s)
- Ankita Roy
- Renal-Electrolyte Division, Department of Medicine; and
| | | | - Núria M Pastor-Soler
- Renal-Electrolyte Division, Department of Medicine; and Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania A.R. and M.M.A. contributed equally to this work.
| |
Collapse
|