1
|
Pedersen FB, Hauge AW, Hansen JF, Andersen LS, Blomsterberg S, Bruunsgaard H. Cost-Effective and Highly Scalable Typing of HLA Classes I and II Genes of up to 96 Individuals Using Nanopore Sequencing. HLA 2025; 105:e70164. [PMID: 40270210 PMCID: PMC12019580 DOI: 10.1111/tan.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
HLA typing of large donor registries and biobanks as well as acute single patient/donor samples remains expensive, slow and logistically challenging, despite recent developments in the field. We have tested and validated a cost-effective, accurate and highly scalable method for typing specific genes in the HLA region. This enables HLA typing from 1 to 96 individuals simultaneously, using a targeted PCR and Native Barcoding kit from Oxford Nanopore Technologies. A primer set for seven HLA genes (HLA-A, -B, -C, -DRB1, -DQA1, -DQB1 and -DPB1) was developed to work in a multiplex PCR reaction. The resulting amplicons provide a possible four-field resolution of the HLA Class I genes and G-group resolution of the HLA Class II genes. The entire process, from DNA to HLA typing result, takes a total of 5.5-10.5 h depending on the number of samples processed simultaneously. Data analysis was conducted using NGSEngine-Turbo from GenDx (Utrecht, The Netherlands), with analysis time ranging from 1 to 5 min per sample. Samples from 96 Danish registered stem cell donors were typed using this method. One allele out of 1128 analysed alleles was inaccurately called homozygous, leading to an accuracy of 99.91%. The rapid turnaround, low cost and high accuracy make this new method highly relevant for HLA typing of large biobanks and donor registries, as well as for acute single samples. HLA typing can be obtained within 1 day, with a cost per sample of approximately €7 when 96 samples are sequenced simultaneously.
Collapse
Affiliation(s)
| | - Anne Werner Hauge
- Department of Clinical ImmunologyRigshospitalet, University Hospital of CopenhagenCopenhagenDenmark
| | | | | | | | - Helle Bruunsgaard
- Department of Clinical ImmunologyRigshospitalet, University Hospital of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Su X, Lin Q, Liu B, Zhou C, Lu L, Lin Z, Si J, Ding Y, Duan S. The promising role of nanopore sequencing in cancer diagnostics and treatment. CELL INSIGHT 2025; 4:100229. [PMID: 39995512 PMCID: PMC11849079 DOI: 10.1016/j.cellin.2025.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/26/2025]
Abstract
Cancer arises from genetic alterations that impact both the genome and transcriptome. The utilization of nanopore sequencing offers a powerful means of detecting these alterations due to its unique capacity for long single-molecule sequencing. In the context of DNA analysis, nanopore sequencing excels in identifying structural variations (SVs), copy number variations (CNVs), gene fusions within SVs, and mutations in specific genes, including those involving DNA modifications and DNA adducts. In the field of RNA research, nanopore sequencing proves invaluable in discerning differentially expressed transcripts, uncovering novel elements linked to transcriptional regulation, and identifying alternative splicing events and RNA modifications at the single-molecule level. Furthermore, nanopore sequencing extends its reach to detecting microorganisms, encompassing bacteria and viruses, that are intricately associated with tumorigenesis and the development of cancer. Consequently, the application prospects of nanopore sequencing in tumor diagnosis and personalized treatment are expansive, encompassing tasks such as tumor identification and classification, the tailoring of treatment strategies, and the screening of prospective patients. In essence, this technology stands poised to unearth novel mechanisms underlying tumorigenesis while providing dependable support for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Xinming Su
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University, Hangzhou 310015, Zhejiang, China
| | - Qingyuan Lin
- The Second Clinical Medical College, Zhejiang Chinese Medicine University BinJiang College, Hangzhou 310053, Zhejiang, China
| | - Bin Liu
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang, China
| | - Chuntao Zhou
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang, China
| | - Liuyi Lu
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang, China
| | - Zihao Lin
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang, China
| | - Jiahua Si
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University, Hangzhou 310015, Zhejiang, China
| | - Yuemin Ding
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang, China
- Institute of Translational Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University, Hangzhou 310015, Zhejiang, China
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang, China
- Institute of Translational Medicine, Hangzhou City University, Hangzhou 310015, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University, Hangzhou 310015, Zhejiang, China
| |
Collapse
|
3
|
Turganbekova A, Abdrakhmanova S, Masalimov Z, Almawi WY. Genetic Diversity and Ethnic Tapestry of Kazakhstan as Inferred from HLA Polymorphism and Population Dynamics: A Comprehensive Review. Genes (Basel) 2025; 16:342. [PMID: 40149493 PMCID: PMC11941833 DOI: 10.3390/genes16030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The human leukocyte antigen (HLA) system represents the most polymorphic segment within human DNA sequences and constitutes a core component of immune defense responses and in understanding population genetics. This research investigates the distribution of HLA class I and II polymorphisms across different ethnic groups in Kazakhstan, offering valuable insights into the genetic diversity and demographic evolution within this region. Methods: We performed an in-depth examination of HLA class I and II polymorphisms across diverse ethnic communities living in Kazakhstan, including Kazakhs, Russians, Uzbeks, Ukrainians, Germans, Tatars, and Koreans. Utilizing data from high-resolution HLA typing studies allowed us to assess allele frequencies alongside haplotype distributions while analyzing genetic interrelations between these populations. Additionally, we performed comparative assessments with global HLA databases to determine the genetic affiliations between these groups and their relationships with neighboring and more distant populations. Results: Our study revealed over 200 HLA alleles within the analyzed populations, and significant variations were observed in their allele and haplotype frequencies. Notably, the Kazakh group exhibited strong genetic ties to Asian and Siberian demographics; conversely, other ethnicities showed associations reflective of their historical roots. Notable alleles included HLA-A*02:01, B*07:02, C*07:02, DRB1*07:01, and DQB1*03:01, commonly observed across various groups. Linkage disequilibrium analysis revealed the presence of population-specific haplotypes, highlighting distinct genetic structures within these communities. Conclusions: The findings highlight the significant genetic diversity in Kazakhstan, influenced by its geographical location at the crossroads of Europe and Asia. These results are pertinent to immunogenetics, transplantation medicine, and personalized healthcare within Kazakhstan and adjacent regions. Future research should expand the sample size and explore disease associations to enhance our comprehension of HLA genetics across Central Asia.
Collapse
Affiliation(s)
- Aida Turganbekova
- Scientific and Production Center for Transfusiology, Astana 010000, Kazakhstan; (A.T.); (S.A.)
| | - Saniya Abdrakhmanova
- Scientific and Production Center for Transfusiology, Astana 010000, Kazakhstan; (A.T.); (S.A.)
| | - Zhaksylyk Masalimov
- Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Wassim Y. Almawi
- Faculty of Sciences, El-Manar University, El-Manar University Campus at El-Manar, Tunis 2092, Tunisia
| |
Collapse
|
4
|
Zhang T, Li H, Jiang M, Hou H, Gao Y, Li Y, Wang F, Wang J, Peng K, Liu YX. Nanopore sequencing: flourishing in its teenage years. J Genet Genomics 2024; 51:1361-1374. [PMID: 39293510 DOI: 10.1016/j.jgg.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Over the past decade, nanopore sequencing has experienced significant advancements and changes, transitioning from an initially emerging technology to a significant instrument in the field of genomic sequencing. However, as advancements in next-generation sequencing technology persist, nanopore sequencing also improves. This paper reviews the developments, applications, and outlook on nanopore sequencing technology. Currently, nanopore sequencing supports both DNA and RNA sequencing, making it widely applicable in areas such as telomere-to-telomere (T2T) genome assembly, direct RNA sequencing (DRS), and metagenomics. The openness and versatility of nanopore sequencing have established it as a preferred option for an increasing number of research teams, signaling a transformative influence on life science research. As the nanopore sequencing technology advances, it provides a faster, more cost-effective approach with extended read lengths, demonstrating the significant potential for complex genome assembly, pathogen detection, environmental monitoring, and human disease research, offering a fresh perspective in sequencing technologies.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Hanzhou Li
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Mian Jiang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Huiyu Hou
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yunyun Gao
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yali Li
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Fuhao Wang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Jun Wang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Yong-Xin Liu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| |
Collapse
|
5
|
Devriese M, Da Silva S, Le Mene M, Rouquie J, Allain V, Kolesar L, Rigo K, Creary LE, Lauterbach N, Usureau C, Dewez M, Caillat-Zucman S, Werner G, Taupin JL. Two-field resolution on-call HLA typing for deceased donors using nanopore sequencing. HLA 2024; 103:e15441. [PMID: 38507216 DOI: 10.1111/tan.15441] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
The current practice of HLA genotyping in deceased donors poses challenges due to limited resolution within time constraints. Nevertheless, the assessment of compatibility between anti-HLA sensitized recipients and mismatched donors remains a critical medical need, particularly when dealing with allele-specific (second field genotyping level) donor-specific antibodies. In this study, we present a customized protocol based on the NanoTYPE® HLA typing kit, employing the MinION® sequencer, which enables rapid HLA typing of deceased donors within a short timeframe of 3.75 h on average at a three-field resolution with almost no residual ambiguities. Through a prospective real-time analysis of HLA typing in 18 donors, we demonstrated the efficacy and precision of our nanopore-based method in comparison to the conventional approach and without delaying organ allocation. Indeed, this duration was consistent with the deceased donor organ donation procedure leading to organ allocation via the French Biomedicine Agency. The improved resolution achieved with our protocol enhances the security of organ allocation, particularly benefiting highly sensitized recipients who often present intricate HLA antibody profiles. By overcoming technical challenges and providing comprehensive genotyping data, this approach holds the potential to significantly impact deceased donor HLA genotyping, thereby facilitating optimal organ allocation strategies.
Collapse
Affiliation(s)
- Magali Devriese
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
- INSERM UMR976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Sephora Da Silva
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
| | - Melchior Le Mene
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
| | - Julien Rouquie
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
| | - Vincent Allain
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
| | | | | | | | | | - Cedric Usureau
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
- INSERM UMR976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | | | - Sophie Caillat-Zucman
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
- INSERM UMR976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | | | - Jean-Luc Taupin
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
- INSERM UMR976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| |
Collapse
|
6
|
Lang J, Qin L. NanoHLA: A Method for Human Leukocyte Antigen Class I Genes Typing Without Error Correction Based on Nanopore Sequencing Data. Methods Mol Biol 2024; 2809:115-126. [PMID: 38907894 DOI: 10.1007/978-1-0716-3874-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Human leukocyte antigen (HLA) typing is of great importance in clinical applications such as organ transplantation, blood transfusion, disease diagnosis and treatment, and forensic analysis. In recent years, nanopore sequencing technology has emerged as a rapid and cost-effective option for HLA typing. However, due to the principles and data characteristics of nanopore sequencing, there was a scarcity of robust and generalizable bioinformatics tools for its downstream analysis, posing a significant challenge in deciphering the thousands of HLA alleles present in the human population. To address this challenge, we developed NanoHLA as a tool for high-resolution typing of HLA class I genes without error correction based on nanopore sequencing. The method integrated the concepts of HLA type coverage analysis and the data conversion techniques employed in Nano2NGS, which was characterized by applying nanopore sequencing data to NGS-liked data analysis pipelines. In validation with public nanopore sequencing datasets, NanoHLA showed an overall concordance rate of 84.34% for HLA-A, HLA-B, and HLA-C, and demonstrated superior performance in comparison to existing tools such as HLA-LA. NanoHLA provides tools and solutions for use in HLA typing related fields, and look forward to further expanding the application of nanopore sequencing technology in both research and clinical settings. The code is available at https://github.com/langjidong/NanoHLA .
Collapse
Affiliation(s)
- Jidong Lang
- Department of Bioinformatics, Qitan Technology (Beijing) Co., Ltd, Beijing, China
| | - Liu Qin
- Department of Bioinformatics, Qitan Technology (Beijing) Co., Ltd, Beijing, China
| |
Collapse
|
7
|
Eskandari SK, Daccache A, Azzi JR. Chimeric antigen receptor T reg therapy in transplantation. Trends Immunol 2024; 45:48-61. [PMID: 38123369 DOI: 10.1016/j.it.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
In the quest for more precise and effective organ transplantation therapies, chimeric antigen receptor (CAR) regulatory T cell (Treg) therapies represent a potential cutting-edge advance. This review comprehensively analyses CAR Tregs and how they may address important drawbacks of polyclonal Tregs and conventional immunosuppressants. We examine a growing body of preclinical findings of CAR Treg therapy in transplantation, discuss CAR Treg design specifics, and explore established and attractive new targets in transplantation. In addition, we explore present impediments where future studies will be necessary to determine the efficacy of CAR Tregs in reshaping alloimmune responses and transplant microenvironments to reduce reliance on chemical immunosuppressants. Overall, ongoing studies and trials are crucial for understanding the full scope of CAR Treg therapy in transplantation.
Collapse
Affiliation(s)
- Siawosh K Eskandari
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Andrea Daccache
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Bioscience Education and Research (UFR Biosciences), Claude Bernard University Lyon 1, Lyon, France
| | - Jamil R Azzi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Becerra-Artiles A, Nanaware PP, Muneeruddin K, Weaver GC, Shaffer SA, Calvo-Calle JM, Stern LJ. Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T-cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2. PLoS Pathog 2023; 19:e1011032. [PMID: 37498934 PMCID: PMC10409285 DOI: 10.1371/journal.ppat.1011032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/08/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but the T-cell response to seasonal coronaviruses remains largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal coronavirus OC43. We identified MHC-bound peptides derived from each of the viral structural proteins (spike, nucleoprotein, hemagglutinin-esterase, membrane, and envelope) as well as non-structural proteins nsp3, nsp5, nsp6, and nsp12. Eighty MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. Fewer and less abundant MHC-I bound OC43-derived peptides were observed, possibly due to MHC-I downregulation induced by OC43 infection. The MHC-II peptides elicited low-abundance recall T-cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T-cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T-cell lines. Among the validated epitopes, spike protein S903-917 presented by DPA1*01:03/DPB1*04:01 and S1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. Nucleoprotein N54-68 and hemagglutinin-esterase HE128-142 presented by DRB1*15:01 and HE259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow CD4 T-cell cross-reactivity after infection or vaccination, and to guide selection of epitopes for inclusion in pan-coronavirus vaccines.
Collapse
Affiliation(s)
- Aniuska Becerra-Artiles
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Padma P. Nanaware
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Khaja Muneeruddin
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
| | - Grant C. Weaver
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Scott A. Shaffer
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - J. Mauricio Calvo-Calle
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Lawrence J. Stern
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
9
|
Anukul N, Jenjaroenpun P, Sirikul C, Wankaew N, Nimsamer P, Roothumnong E, Pithukpakorn M, Leetrakool N, Wongsurawat T. Ultrarapid and high-resolution HLA class I typing using transposase-based nanopore sequencing applied in pharmacogenetic testing. Front Genet 2023; 14:1213457. [PMID: 37424729 PMCID: PMC10326273 DOI: 10.3389/fgene.2023.1213457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Nanopore sequencing has been examined as a method for rapid and high-resolution human leukocyte antigen (HLA) typing in recent years. We aimed to apply ultrarapid nanopore-based HLA typing for HLA class I alleles associated with drug hypersensitivity, including HLA-A*31:01, HLA-B*15:02, and HLA-C*08:01. Most studies have used the Oxford Nanopore Ligation Sequencing kit for HLA typing, which requires several enzymatic reactions and remains relatively expensive, even when the samples are multiplexed. Here, we used the Oxford Nanopore Rapid Barcoding kit, which is transposase-based, with library preparation taking less than 1 h of hands-on time and requiring minimal reagents. Twenty DNA samples were genotyped for HLA-A, -B, and -C; 11 samples were from individuals of different ethnicity and nine were from Thai individuals. Two primer sets, a commercial set and a published set, were used to amplify the HLA-A, -B, and -C genes. HLA-typing tools that used different algorithms were applied and compared. We found that without using several third-party reagents, the transposase-based method reduced the hands-on time from approximately 9 h to 4 h, making this a viable approach for obtaining same-day results from 2 to 24 samples. However, an imbalance in the PCR amplification of different haplotypes could affect the accuracy of typing results. This work demonstrates the ability of transposase-based sequencing to report 3-field HLA alleles and its potential for race- and population-independent testing at considerably decreased time and cost.
Collapse
Affiliation(s)
- Nampeung Anukul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research and Innovation Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chonticha Sirikul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Natnicha Wankaew
- Division of Medical Bioinformatics, Research and Innovation Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pattaraporn Nimsamer
- Division of Medical Bioinformatics, Research and Innovation Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ekkapong Roothumnong
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Manop Pithukpakorn
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nipapan Leetrakool
- Blood Bank Section, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicines, Chiang Mai University, Chiang Mai, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research and Innovation Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
10
|
Bruijnesteijn J. HLA/MHC and KIR characterization in humans and non-human primates using Oxford Nanopore Technologies and Pacific Biosciences sequencing platforms. HLA 2023; 101:205-221. [PMID: 36583332 DOI: 10.1111/tan.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The gene products of the HLA/MHC and KIR multigene families are important modulators of the immune system and are associated with health and disease. Characterization of the genes encoding these receptors has been integrated into different biomedical applications, including transplantation and reproduction biology, immune therapies and in fundamental research into disease susceptibility or resistance. Conventional short-read sequencing strategies have shown their value in high throughput typing, but are insufficient to uncover the entire complexity of the highly polymorphic HLA/MHC and KIR gene systems. The implementation of single-molecule and real-time sequencing platforms, offered by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), revolutionized the fields of genomics and transcriptomics. Using fundamentally distinct principles, these platforms generate long-read data that can unwire the plasticity of the HLA/MHC and KIR genes, including high-resolution characterization of genes, alleles, phased haplotypes, transcription levels and epigenetics modification patterns. These insights might have profound clinical relevance, such as improved matching of donors and patients in clinical transplantation, but could also lift disease association studies to a higher level. Even more, a comprehensive characterization may refine animal models in preclinical studies. In this review, the different HLA/MHC and KIR characterization approaches using PacBio and ONT platforms are described and discussed.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
11
|
Park DG, Ha ES, Kang B, Choi I, Kwak JE, Choi J, Park J, Lee W, Kim SH, Kim SH, Lee JH. Development and Evaluation of a Next-Generation Sequencing Panel for the Multiple Detection and Identification of Pathogens in Fermented Foods. J Microbiol Biotechnol 2023; 33:83-95. [PMID: 36457187 PMCID: PMC9895999 DOI: 10.4014/jmb.2211.11009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022]
Abstract
These days, bacterial detection methods have some limitations in sensitivity, specificity, and multiple detection. To overcome these, novel detection and identification method is necessary to be developed. Recently, NGS panel method has been suggested to screen, detect, and even identify specific foodborne pathogens in one reaction. In this study, new NGS panel primer sets were developed to target 13 specific virulence factor genes from five types of pathogenic Escherichia coli, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium, respectively. Evaluation of the primer sets using singleplex PCR, crosscheck PCR and multiplex PCR revealed high specificity and selectivity without interference of primers or genomic DNAs. Subsequent NGS panel analysis with six artificially contaminated food samples using those primer sets showed that all target genes were multi-detected in one reaction at 108-105 CFU of target strains. However, a few false-positive results were shown at 106-105 CFU. To validate this NGS panel analysis, three sets of qPCR analyses were independently performed with the same contaminated food samples, showing the similar specificity and selectivity for detection and identification. While this NGS panel still has some issues for detection and identification of specific foodborne pathogens, it has much more advantages, especially multiple detection and identification in one reaction, and it could be improved by further optimized NGS panel primer sets and even by application of a new real-time NGS sequencing technology. Therefore, this study suggests the efficiency and usability of NGS panel for rapid determination of origin strain in various foodborne outbreaks in one reaction.
Collapse
Affiliation(s)
- Dong-Geun Park
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Su Ha
- Research and Development Center, Sanigen Co., Ltd, Anyang 14059, Republic of Korea
| | - Byungcheol Kang
- Research and Development Center, Sanigen Co., Ltd, Anyang 14059, Republic of Korea
| | - Iseul Choi
- Research and Development Center, Sanigen Co., Ltd, Anyang 14059, Republic of Korea
| | - Jeong-Eun Kwak
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinho Choi
- Research and Development Center, Sanigen Co., Ltd, Anyang 14059, Republic of Korea
| | - Jeongwoong Park
- Research and Development Center, Sanigen Co., Ltd, Anyang 14059, Republic of Korea
| | - Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea,Corresponding author Phone: +82-2-880-4854 Fax: +82-2-873-5095 E-mail:
| |
Collapse
|
12
|
Lehmann C, Pehnke S, Weimann A, Bachmann A, Dittrich K, Petzold F, Fürst D, de Fallois J, Landgraf R, Henschler R, Lindner TH, Halbritter J, Doxiadis I, Popp B, Münch J. Extended genomic HLA typing identifies previously unrecognized mismatches in living kidney transplantation. Front Immunol 2023; 14:1094862. [PMID: 36776892 PMCID: PMC9911689 DOI: 10.3389/fimmu.2023.1094862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Antibody mediated rejection (ABMR) is the most common cause of long-term allograft loss in kidney transplantation (KT). Therefore, a low human leukocyte antigen (HLA) mismatch (MM) load is favorable for KT outcomes. Hitherto, serological or low-resolution molecular HLA typing have been adapted in parallel. Here, we aimed to identify previously missed HLA mismatches and corresponding antibodies by high resolution HLA genotyping in a living-donor KT cohort. Methods 103 donor/recipient pairs transplanted at the University of Leipzig Medical Center between 1998 and 2018 were re-typed using next generation sequencing (NGS) of the HLA loci -A, -B, -C, -DRB1, -DRB345, -DQA1, -DQB1, -DPA1, and -DPB1. Based on these data, we compiled HLA MM counts for each pair and comparatively evaluated genomic HLA-typing with pre-transplant obtained serological/low-resolution HLA (=one-field) typing results. NGS HLA typing (=two-field) data was further used for reclassification of de novo HLA antibodies as "donor-specific". Results By two-field HLA re-typing, we were able to identify additional MM in 64.1% (n=66) of cases for HLA loci -A, -B, -C, -DRB1 and -DQB1 that were not observed by one-field HLA typing. In patients with biopsy proven ABMR, two-field calculated MM count was significantly higher than by one-field HLA typing. For additional typed HLA loci -DRB345, -DQA1, -DPA1, and -DPB1 we observed 2, 26, 3, and 23 MM, respectively. In total, 37.3% (69/185) of de novo donor specific antibodies (DSA) formation was directed against these loci (DRB345 ➔ n=33, DQA1 ➔ n=33, DPA1 ➔ n=1, DPB1 ➔ n=10). Conclusion Our results indicate that two-field HLA typing is feasible and provides significantly more sensitive HLA MM recognition in living-donor KT. Furthermore, accurate HLA typing plays an important role in graft management as it can improve discrimination between donor and non-donor HLA directed cellular and humoral alloreactivity in the long range. The inclusion of additional HLA loci against which antibodies can be readily detected, HLA-DRB345, -DQA1, -DQB1, -DPA1, and -DPB1, will allow a more precise virtual crossmatch and better prediction of potential DSA. Furthermore, in living KT, two-field HLA typing could contribute to the selection of the immunologically most suitable donors.
Collapse
Affiliation(s)
- Claudia Lehmann
- Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Sarah Pehnke
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Antje Weimann
- Division of Visceral Surgery and Transplantation Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Anette Bachmann
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Katalin Dittrich
- Department of Pediatric Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Friederike Petzold
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Daniel Fürst
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Jonathan de Fallois
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Ramona Landgraf
- Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Reinhard Henschler
- Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Tom H Lindner
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Jan Halbritter
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany.,Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ilias Doxiadis
- Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Johannes Münch
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany.,Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Becerra-Artiles A, Calvo-Calle JM, Co MD, Nanaware PP, Cruz J, Weaver GC, Lu L, Forconi C, Finberg RW, Moormann AM, Stern LJ. Broadly recognized, cross-reactive SARS-CoV-2 CD4 T cell epitopes are highly conserved across human coronaviruses and presented by common HLA alleles. Cell Rep 2022; 39:110952. [PMID: 35675811 PMCID: PMC9135679 DOI: 10.1016/j.celrep.2022.110952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/03/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Sequence homology between SARS-CoV-2 and common-cold human coronaviruses (HCoVs) raises the possibility that memory responses to prior HCoV infection can affect T cell response in COVID-19. We studied T cell responses to SARS-CoV-2 and HCoVs in convalescent COVID-19 donors and identified a highly conserved SARS-CoV-2 sequence, S811-831, with overlapping epitopes presented by common MHC class II proteins HLA-DQ5 and HLA-DP4. These epitopes are recognized by low-abundance CD4 T cells from convalescent COVID-19 donors, mRNA vaccine recipients, and uninfected donors. TCR sequencing revealed a diverse repertoire with public TCRs. T cell cross-reactivity is driven by the high conservation across human and animal coronaviruses of T cell contact residues in both HLA-DQ5 and HLA-DP4 binding frames, with distinct patterns of HCoV cross-reactivity explained by MHC class II binding preferences and substitutions at secondary TCR contact sites. These data highlight S811-831 as a highly conserved CD4 T cell epitope broadly recognized across human populations.
Collapse
Affiliation(s)
| | | | - Mary Dawn Co
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Padma P Nanaware
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - John Cruz
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Grant C Weaver
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Liying Lu
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Catherine Forconi
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Robert W Finberg
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Ann M Moormann
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
14
|
Yang J, Liu H, Pan W, Song M, Lu Y, Wang-Ngai Chow F, Hang-Mei Leung P, Deng Y, Hori M, He N, Li S. Recent Advances of Human Leukocyte Antigen (HLA) Typing Technology Based on High-Throughput Sequencing. J Biomed Nanotechnol 2022; 18:617-639. [PMID: 35715925 DOI: 10.1166/jbn.2022.3280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The major histocompatibility complex (MHC) in humans is a genetic region consisting of cell surface proteins located on the short arm of chromosome 6. This is also known as the human leukocyte antigen (HLA) region. The HLA region consists of genes that exhibit complex genetic polymorphisms, and are extensively involved in immune responses. Each individual has a unique set of HLAs. Donor-recipient HLA allele matching is an important factor for organ transplantation. Therefore, an established rapid and accurate HLA typing technology is instrumental to preventing graft-verses-host disease (GVHD) in organ recipients. As of recent, high-throughput sequencing has allowed for an increase read length and higher accuracy and throughput, thus achieving complete and high-resolution full-length typing. With more advanced nanotechnology used in high-throughput sequencing, HLA typing is more widely used in third-generation single-molecule sequencing. This review article summarizes some of the most widely used sequencing typing platforms and evaluates the latest developments in HLA typing kits and their clinical applications.
Collapse
Affiliation(s)
- Jin Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Wenjing Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Mengru Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yutong Lu
- School of Electrical and Information Engineering, Hunan University, Changsha 410012, Hunan, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Masahi Hori
- 2-16-5 Edagawa, Koto-Ku, Tokyo, 135-0051, Japan
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| |
Collapse
|
15
|
Krummey SM, Cliff Sullivan H. The utility of imputation for molecular mismatch analysis in solid organ transplantation. Hum Immunol 2022; 83:241-247. [PMID: 35216846 DOI: 10.1016/j.humimm.2021.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023]
Abstract
HLA genotyping has undergone a rapid progression in resolution since the development of DNA-based typing methods. Despite the advent of high-resolution next-generation sequencing, the bulk of solid organ genotyping is performed at intermediate resolution, which provides multiple possible two-field results for each classical HLA loci. As a result, several methodologies have been developed to impute the most likely allele-level (two-field) HLA genotype for the purposes of donor-recipient compatibility analysis. The advent of molecular mismatch analysis, however, has placed a new emphasis on the accuracy of imputation. While seminal molecular mismatch studies have relied on the imputation of intermediate resolution genotyping, several recent studies have performed analysis showing that imputation generates inaccuracies in epitope identification. While the clinical impact of these errors is not clear, it is important that these concerns do not preclude future progress in understanding the utility of molecular mismatch analysis in transplantation. In the future, advances in genotyping methods will result in routine two-field resolution that will abrogate these concerns. In the meantime, however, studies are needed in order to address the role of molecular mismatch in diverse patient populations and to carefully address the potential of molecular mismatch analysis in the context of imputation.
Collapse
Affiliation(s)
- Scott M Krummey
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - H Cliff Sullivan
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
16
|
Peacock S, Briggs D, Barnardo M, Battle R, Brookes P, Callaghan C, Clark B, Collins C, Day S, Diaz Burlinson N, Dunn P, Fernando R, Fuggle S, Harmer A, Kallon D, Keegan D, Key T, Lawson E, Lloyd S, Martin J, McCaughan J, Middleton D, Partheniou F, Poles A, Rees T, Sage D, Santos-Nunez E, Shaw O, Willicombe M, Worthington J. BSHI/BTS guidance on crossmatching before deceased donor kidney transplantation. Int J Immunogenet 2021; 49:22-29. [PMID: 34555264 PMCID: PMC9292213 DOI: 10.1111/iji.12558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
All UK H&I laboratories and transplant units operate under a single national kidney offering policy, but there have been variations in approach regarding when to undertake the pre‐transplant crossmatch test. In order to minimize cold ischaemia times for deceased donor kidney transplantation we sought to find ways to be able to report a crossmatch result as early as possible in the donation process. A panel of experts in transplant surgery, nephrology, specialist nursing in organ donation and H&I (all relevant UK laboratories represented) assessed evidence and opinion concerning five factors that relate to the effectiveness of the crossmatch process, as follows: when the result should be ready for reporting; what level of donor HLA typing is needed; crossmatch sample type and availability; fairness and equity; risks and patient safety. Guidelines aimed at improving practice based on these issues are presented, and we expect that following these will allow H&I laboratories to contribute to reducing CIT in deceased donor kidney transplantation.
Collapse
Affiliation(s)
- S Peacock
- Tissue Typing Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - D Briggs
- H&I Laboratory, NHSBT Birmingham Vincent Drive, Birmingham, UK
| | - M Barnardo
- Clinical Transplant Immunology, Churchill Hospital, Oxford, UK
| | - R Battle
- H&I Laboratory, SNBTS, Edinburgh, UK
| | - P Brookes
- H&I Laboratory, Harefield Hospital, Harefield, UK
| | - C Callaghan
- Department of Nephrology and Transplantation, Guy's Hospital, London, UK
| | - B Clark
- H&I Laboratory, Leeds Teaching Hospitals NHS Trust, UK
| | - C Collins
- H&I Laboratory, NHSBT Birmingham Vincent Drive, Birmingham, UK
| | - S Day
- H&I Laboratory, Southmead Hospital, Bristol, UK
| | - N Diaz Burlinson
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester, UK
| | - P Dunn
- Transplant Laboratory, Leicester General Hospital, Leicester, UK
| | - R Fernando
- H&I Laboratory, The Anthony Nolan Laboratories, Royal Free Hospital, UK
| | - S Fuggle
- Organ Donation & Transplantation, NHSBT, Stoke Gifford, Bristol, UK
| | - A Harmer
- H&I Laboratory, NHSBT Barnsley Centre, Barnsley, UK
| | - D Kallon
- H & I Laboratory, Royal London Hospital, London, UK
| | - D Keegan
- Department of H&I, Beaumont Hospital, Dublin, UK
| | - T Key
- H&I Laboratory, NHSBT Barnsley Centre, Barnsley, UK
| | - E Lawson
- Organ Donation and Transplantation, NHSBT, Birmingham, UK
| | - S Lloyd
- Welsh Transplantation & Immunogenetics Laboratory, Cardiff, UK
| | - J Martin
- H&I Laboratory, Belfast Health and Social Care Trust, Belfast, UK
| | - J McCaughan
- H&I Laboratory, Belfast Health and Social Care Trust, Belfast, UK
| | - D Middleton
- H&I Laboratory, Liverpool Foundation Trust, Liverpool, UK
| | - F Partheniou
- H&I Laboratory, Liverpool Foundation Trust, Liverpool, UK
| | - A Poles
- H&I Laboratory, University Hospitals Plymouth, Plymouth, UK.,H&I Laboratory, NHSBT Filton, Bristol, UK
| | - T Rees
- Welsh Transplantation & Immunogenetics Laboratory, Cardiff, UK
| | - D Sage
- H&I Laboratory, NHSBT Tooting Centre, London, UK
| | - E Santos-Nunez
- H&I Laboratory, Imperial College Healthcare NHS Trust, London, UK
| | - O Shaw
- H&I Laboratory, Viapath, Guys & St Thomas, London, UK
| | - M Willicombe
- Department of Immunology and Inflammation, Imperial College London, UK
| | - J Worthington
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
17
|
Watson CM, Crinnion LA, Simmonds J, Camm N, Adlard J, Bonthron DT. Long-read nanopore sequencing enables accurate confirmation of a recurrent PMS2 insertion-deletion variant located in a region of complex genomic architecture. Cancer Genet 2021; 256-257:122-126. [PMID: 34116445 DOI: 10.1016/j.cancergen.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/08/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Targeted next generation sequencing (NGS) is the predominant methodology for the molecular genetic diagnosis of inherited conditions. In many laboratories, NGS-identified variants are routinely validated using a different method, to minimize the risk of a false-positive diagnosis. This can be particularly important when pathogenic variants are located in complex genomic regions. In this situation, new long-read sequencing technologies have potential advantages over existing alternatives. However, practical examples of their utility for diagnostic purposes remain scant. Here, we report the use of nanopore sequencing to validate a PMS2 mutation refractory to conventional methods. In a patient who presented with colorectal cancer and loss of PMS2 immunostaining, short-read NGS of Lynch syndrome-associated genes identified the recurrent PMS2 insertion-deletion variant, c.736_741delinsTGTGTGTGAAG (p.Pro246Cysfs*3). Confirmation of this variant using bidirectional Sanger sequencing was impeded by an upstream intron 6 poly(T) tract. Using a locus-specific amplicon template, we undertook nanopore long-read sequencing in order to assess the diagnostic accuracy of this platform. Pairwise comparison between a curated benchmark allele (derived from short-read NGS and unidirectional Sanger sequencing) and the consensus nanopore dataset revealed 100% sequence identity. Our experience provides insight into the robustness and ease of deployment of "third-generation" sequencing for accurate characterisation of pathogenic variants.
Collapse
Affiliation(s)
- Christopher M Watson
- Yorkshire and North East Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds LS9 7TF, United Kingdom; Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom.
| | - Laura A Crinnion
- Yorkshire and North East Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds LS9 7TF, United Kingdom; Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Jennifer Simmonds
- Yorkshire and North East Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Nick Camm
- Yorkshire and North East Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Julian Adlard
- The Clinical Genetics Department, Chapel Allerton Hospital, Leeds LS7 4SA, United Kingdom
| | - David T Bonthron
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom; The Clinical Genetics Department, Chapel Allerton Hospital, Leeds LS7 4SA, United Kingdom
| |
Collapse
|
18
|
Nanopore sequencing in non-human forensic genetics. Emerg Top Life Sci 2021; 5:465-473. [PMID: 34002773 PMCID: PMC8457772 DOI: 10.1042/etls20200287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 12/28/2022]
Abstract
The past decade has seen a rapid expansion of non-human forensic genetics coinciding with the development of 2nd and 3rd generation DNA sequencing technologies. Nanopore sequencing is one such technology that offers massively parallel sequencing at a fraction of the capital cost of other sequencing platforms. The application of nanopore sequencing to species identification has already been widely demonstrated in biomonitoring studies and has significant potential for non-human forensic casework, particularly in the area of wildlife forensics. This review examines nanopore sequencing technology and assesses its potential applications, advantages and drawbacks for use in non-human forensics, alongside other next-generation sequencing platforms and as a possible replacement to Sanger sequencing. We assess the specific challenges of sequence error rate and the standardisation of consensus sequence production, before discussing recent progress in the validation of nanopore sequencing for use in forensic casework. We conclude that nanopore sequencing may be able to play a considerable role in the future of non-human forensic genetics, especially for applications to wildlife law enforcement within emerging forensic laboratories.
Collapse
|
19
|
Pinsach-Abuin ML, Del Olmo B, Pérez-Agustin A, Mates J, Allegue C, Iglesias A, Ma Q, Merkurjev D, Konovalov S, Zhang J, Sheikh F, Telenti A, Brugada J, Brugada R, Gymrek M, di Iulio J, Garcia-Bassets I, Pagans S. Analysis of Brugada syndrome loci reveals that fine-mapping clustered GWAS hits enhances the annotation of disease-relevant variants. Cell Rep Med 2021; 2:100250. [PMID: 33948580 PMCID: PMC8080235 DOI: 10.1016/j.xcrm.2021.100250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/07/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
Genome-wide association studies (GWASs) are instrumental in identifying loci harboring common single-nucleotide variants (SNVs) that affect human traits and diseases. GWAS hits emerge in clusters, but the focus is often on the most significant hit in each trait- or disease-associated locus. The remaining hits represent SNVs in linkage disequilibrium (LD) and are considered redundant and thus frequently marginally reported or exploited. Here, we interrogate the value of integrating the full set of GWAS hits in a locus repeatedly associated with cardiac conduction traits and arrhythmia, SCN5A-SCN10A. Our analysis reveals 5 common 7-SNV haplotypes (Hap1-5) with 2 combinations associated with life-threatening arrhythmia-Brugada syndrome (the risk Hap1/1 and protective Hap2/3 genotypes). Hap1 and Hap2 share 3 SNVs; thus, this analysis suggests that assuming redundancy among clustered GWAS hits can lead to confounding disease-risk associations and supports the need to deconstruct GWAS data in the context of haplotype composition.
Collapse
Affiliation(s)
- Mel Lina Pinsach-Abuin
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Bernat Del Olmo
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Adrian Pérez-Agustin
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Jesus Mates
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Catarina Allegue
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Anna Iglesias
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Qi Ma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Daria Merkurjev
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Statistics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sergiy Konovalov
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Farah Sheikh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Amalio Telenti
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Josep Brugada
- Arrhythmia Unit, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Ramon Brugada
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Service, Hospital Universitari Dr. Josep Trueta, Girona, Spain
| | - Melissa Gymrek
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Julia di Iulio
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sara Pagans
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
20
|
Johansson T, Koskela S, Yohannes DA, Partanen J, Saavalainen P. Targeted RNA-Based Oxford Nanopore Sequencing for Typing 12 Classical HLA Genes. Front Genet 2021; 12:635601. [PMID: 33763116 PMCID: PMC7982845 DOI: 10.3389/fgene.2021.635601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 01/29/2023] Open
Abstract
Identification of human leukocyte antigen (HLA) alleles from next-generation sequencing (NGS) data is challenging because of the high polymorphism and mosaic nature of HLA genes. Owing to the complex nature of HLA genes and consequent challenges in allele assignment, Oxford Nanopore Technologies' (ONT) single-molecule sequencing technology has been of great interest due to its fitness for sequencing long reads. In addition to the read length, ONT's advantages are its portability and possibility for a rapid real-time sequencing, which enables a simultaneous data analysis. Here, we describe a targeted RNA-based method for HLA typing using ONT sequencing and SeqNext-HLA SeqPilot software (JSI Medical Systems GmbH). Twelve classical HLA genes were enriched from cDNA of 50 individuals, barcoded, pooled, and sequenced in 10 MinION R9.4 SpotON flow cell runs producing over 30,000 reads per sample. Using barcoded 2D reads, SeqPilot assigned HLA alleles to two-field typing resolution or higher with the average read depth of 1750x. Sequence analysis resulted in 99-100% accuracy at low-resolution level (one-field) and in 74-100% accuracy at high-resolution level (two-field) with the expected alleles. There are still some limitations with ONT RNA sequencing, such as noisy reads, homopolymer errors, and the lack of robust algorithms, which interfere with confident allele assignment. These issues need to be inspected carefully in the future to improve the allele call rates. Nevertheless, here we show that sequencing of multiplexed cDNA amplicon libraries on ONT MinION can produce accurate high-resolution typing results of 12 classical HLA loci. For HLA research, ONT RNA sequencing is a promising method due to its capability to sequence full-length HLA transcripts. In addition to HLA genotyping, the technique could also be applied for simultaneous expression analysis.
Collapse
Affiliation(s)
- Tiira Johansson
- Translational Immunology Research Program and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Finnish Red Cross Blood Service, Helsinki, Finland
| | - Satu Koskela
- Finnish Red Cross Blood Service, Helsinki, Finland
| | - Dawit A Yohannes
- Translational Immunology Research Program and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Päivi Saavalainen
- Translational Immunology Research Program and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Finnish Red Cross Blood Service, Helsinki, Finland
| |
Collapse
|
21
|
Liu C, Yang X, Duffy BF, Hoisington-Lopez J, Crosby M, Porche-Sorbet R, Saito K, Berry R, Swamidass V, Mitra RD. High-resolution HLA typing by long reads from the R10.3 Oxford nanopore flow cells. Hum Immunol 2021; 82:288-295. [PMID: 33612390 DOI: 10.1016/j.humimm.2021.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/12/2023]
Abstract
Nanopore sequencing has been investigated as a rapid and cost-efficient option for HLA typing in recent years. Despite the lower raw read accuracy, encouraging typing accuracy has been reported, and long reads from the platform offer additional benefits of the improved phasing of distant variants. The newly released R10.3 flow cells are expected to provide higher read-level accuracy than previous chemistries. We examined the performance of R10.3 flow cells on the MinION device in HLA typing after enrichment of target genes by multiplexed PCR. We also aimed to mimic a 1-day workflow with 8-24 samples per sequencing run. A diverse collection of 102 unique samples were typed for HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3/4/5 loci. The concordance rates at 2-field and 3-field resolutions were 99.5% (1836 alleles) and 99.3% (1710 alleles). We also report important quality metrics from these sequencing runs. Continued research and independent validations are warranted to increase the robustness of nanopore-based HLA typing for broad clinical application.
Collapse
Affiliation(s)
- Chang Liu
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Xiao Yang
- GeneGenieDx, 160 E Tasman Dr Ste 109, San Jose, CA, USA
| | - Brian F Duffy
- HLA Laboratory, Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Jessica Hoisington-Lopez
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - MariaLynn Crosby
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rhonda Porche-Sorbet
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Rick Berry
- PlatformSTL, 4340 Duncan Ave. St. Louis, MO, USA
| | | | - Robi D Mitra
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
22
|
New challenges, new opportunities: Next generation sequencing and its place in the advancement of HLA typing. Hum Immunol 2021; 82:478-487. [PMID: 33551127 DOI: 10.1016/j.humimm.2021.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
The Human Leukocyte Antigen (HLA) system has a critical role in immunorecognition, transplantation, and disease association. Early typing techniques provided the foundation for genotyping methods that revealed HLA as one of the most complex, polymorphic regions of the human genome. Next Generation Sequencing (NGS), the latest molecular technology introduced in clinical tissue typing laboratories, has demonstrated advantages over other established methods. NGS offers high-resolution sequencing of entire genes in time frames and price points considered unthinkable just a few years ago, contributing a wealth of data informing histocompatibility assessment and standards of clinical care. Although the NGS platforms share a high-throughput massively parallel processing model, differing chemistries provide specific strengths and weaknesses. Research-oriented Third Generation Sequencing and related advances in bioengineering continue to broaden the future of NGS in clinical settings. These diverse applications have demanded equally innovative strategies for data management and computational bioinformatics to support and analyze the unprecedented volume and complexity of data generated by NGS. We discuss some of the challenges and opportunities associated with NGS technologies, providing a comprehensive picture of the historical developments that paved the way for the NGS revolution, its current state and future possibilities for HLA typing.
Collapse
|
23
|
Dilthey AT. State-of-the-art genome inference in the human MHC. Int J Biochem Cell Biol 2021; 131:105882. [PMID: 33189874 DOI: 10.1016/j.biocel.2020.105882] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
The Major Histocompatibility Complex (MHC) on the short arm of chromosome 6 is associated with more diseases than any other region of the genome; it encodes the antigen-presenting Human Leukocyte Antigen (HLA) proteins and is one of the key immunogenetic regions of the genome. Accurate genome inference and interpretation of MHC association signals have traditionally been hampered by the region's uniquely complex features, such as high levels of polymorphism; inter-gene sequence homologies; structural variation; and long-range haplotype structures. Recent algorithmic and technological advances have, however, significantly increased the accessibility of genetic variation in the MHC; these developments include (i) accurate SNP-based HLA type imputation; (ii) genome graph approaches for variation-aware genome inference from next-generation sequencing data; (iii) long-read-based diploid de novo assembly of the MHC; (iv) cost-effective targeted MHC sequencing methods. Applied to hundreds of thousands of samples over the last years, these technologies have already enabled significant biological discoveries, for example in the field of autoimmune disease genetics. Remaining challenges concern the development of integrated methods that leverage haplotype-resolved de novo assembly of the MHC for the development of improved MHC genotyping methods for short reads and the construction of improved reference panels for SNP-based imputation. Improved genome inference in the MHC can crucially contribute to an improved genetic and functional understanding of many immune-related phenotypes and diseases.
Collapse
Affiliation(s)
- Alexander T Dilthey
- Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
24
|
Chen J, Madireddi S, Nagarkar D, Migdal M, Vander Heiden J, Chang D, Mukhyala K, Selvaraj S, Kadel EE, Brauer MJ, Mariathasan S, Hunkapiller J, Jhunjhunwala S, Albert ML, Hammer C. In silico tools for accurate HLA and KIR inference from clinical sequencing data empower immunogenetics on individual-patient and population scales. Brief Bioinform 2020; 22:5906908. [PMID: 32940337 PMCID: PMC8138874 DOI: 10.1093/bib/bbaa223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Immunogenetic variation in humans is important in research, clinical diagnosis and increasingly a target for therapeutic intervention. Two highly polymorphic loci play critical roles, namely the human leukocyte antigen (HLA) system, which is the human version of the major histocompatibility complex (MHC), and the Killer-cell immunoglobulin-like receptors (KIR) that are relevant for responses of natural killer (NK) and some subsets of T cells. Their accurate classification has typically required the use of dedicated biological specimens and a combination of in vitro and in silico efforts. Increased availability of next generation sequencing data has led to the development of ancillary computational solutions. Here, we report an evaluation of recently published algorithms to computationally infer complex immunogenetic variation in the form of HLA alleles and KIR haplotypes from whole-genome or whole-exome sequencing data. For both HLA allele and KIR gene typing, we identified tools that yielded >97% overall accuracy for four-digit HLA types, and >99% overall accuracy for KIR gene presence, suggesting the readiness of in silico solutions for use in clinical and high-throughput research settings.
Collapse
Affiliation(s)
- Jieming Chen
- Department of Bioinformatics and Computational Biology
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|