1
|
Semper AE, Olver J, Warner J, Cehovin A, Fay PC, Hart PJ, Golding JP, Benassi V, Preziosi MP, Al-Asadi KHR, Blumberg LH, de la Fuente J, Elaldi N, Fletcher T, Formenty PBH, Gouya MM, Günther S, Hewson R, Jamil B, Kobinger G, Korukluoglu G, Lempereur L, Palacios G, Papa A, Pshenichnaya N, Schmaljohn C, Sow SO, Sprong H, Vatansever Z, Brooks TJG. Research and product development for Crimean-Congo haemorrhagic fever: priorities for 2024-30. THE LANCET. INFECTIOUS DISEASES 2025; 25:e223-e234. [PMID: 39522529 DOI: 10.1016/s1473-3099(24)00656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is a widely distributed and potentially fatal tick-borne viral disease with no licensed specific treatments or vaccines. In 2019, WHO published an advanced draft of a research and development roadmap for CCHF that prioritised the development and deployment of the medical countermeasures most needed by CCHF-affected countries. This Personal View presents updated CCHF research and development priorities and is the product of broad consultation with a working group of 20 leading experts in 2023-24. The strategic goals, milestones, and timelines have been revised and expanded to reflect scientific advances since 2019, including the identification of antibodies with therapeutic potential and the progression of four vaccine candidates through phase 1 clinical trials. This update emphasises the need for a One Health approach to manage CCHF, from integrated cross-sectoral surveillance to novel interventions that target ticks and their vertebrate hosts to reduce CCHF virus transmission to humans. The overarching vision for rapid diagnostics and specific therapeutics by 2028, followed by options to limit CCHF virus transmission and control disease by 2030, is deliberately ambitious and will only be achieved through coordinated international action from affected countries, funders, scientists, product developers, manufacturers, regulators, national authorities, and policy makers.
Collapse
Affiliation(s)
- Amanda E Semper
- Epidemic and Emerging Infections Group, UK Health Security Agency, Salisbury, UK.
| | - Janie Olver
- Epidemic and Emerging Infections Group, UK Health Security Agency, Salisbury, UK
| | - Jenny Warner
- Science Group, UK Health Security Agency, Salisbury, UK
| | | | | | | | | | | | | | | | - Lucille H Blumberg
- Department of Public Health and Outbreak Response, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - José de la Fuente
- Group of Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (Spanish National Research Council CSIC, University of Castilla-La Mancha UCLM, Autonomous Regional Government of Castile-La Mancha JCCM), Ciudad Real, Spain
| | - Nazif Elaldi
- Department of Infectious Diseases & Clinical Microbiology, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Tom Fletcher
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Mohammad Mehdi Gouya
- Faculty of Public Health, Iran University of Medical Sciences & Health Services, Tehran, Iran
| | - Stephan Günther
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Roger Hewson
- Science Group, UK Health Security Agency, Salisbury, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Bushra Jamil
- Section of Infectious Diseases, Department of Medicine, AgaKhan University, Karachi, Pakistan
| | - Gary Kobinger
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Gülay Korukluoglu
- University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Türkiye
| | | | - Gustavo Palacios
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Papa
- Department of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Natalia Pshenichnaya
- Central Research Institute of Epidemiology of Rospotrebnadzor, Moscow, Russia; Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Connie Schmaljohn
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases-National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Samba O Sow
- Centre for Vaccine Development, Bamako, Mali
| | - Hein Sprong
- National Institute of Public Health & the Environment, Bilthoven, Netherlands
| | - Zati Vatansever
- Department of Parasitology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Timothy J G Brooks
- Epidemic and Emerging Infections Group, UK Health Security Agency, Salisbury, UK
| |
Collapse
|
2
|
Abbasi AM, Nasir S, Bajwa AA, Akbar H, Ali MM, Rashid MI. A comparative study of the microbiomes of the ticks Rhipicephalus microplus and Hyalomma anatolicum. Parasite 2024; 31:74. [PMID: 39607975 PMCID: PMC11604214 DOI: 10.1051/parasite/2024074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Hyalomma anatolicum and Rhipicephalus microplus are tick species that are important vectors of numerous pathogens affecting both humans and livestock. Endosymbionts, such as Coxiella-like endosymbionts (CLE), Francisella-like endosymbionts (FLE), and Candidatus Midichloria, play a crucial role in the physiology and vector competence of these ticks. In this study, we investigated the microbial composition of H. anatolicum and R. microplus from four geographically distinct regions of Pakistan to assess whether environmental differences influence their microbiomes. We analyzed the ticks' gut microbiome targeting the V3-V4 hypervariable region of 16S rRNA for Illumina 16S metagenome NGS sequencing and processed overall 144 ticks. Analysis of gut bacterial composition resulted in observation of 1200 R. microplus and 968 H. anatolicum unique amplicon sequencing variants (ASVs). Relative abundance, Alpha diversity (Shannon, Faith's phylogenetic distance) and beta diversity metrics (Bray-Curtis, Jaccard and UniFrac) were analyzed and revealed that H. anatolicum ticks have significantly unique and diverse microbial communities with Acinetobacter indicus and Francisella-like endosymbionts dominating as opposed to Candidatus Midichloria. Rhipicephalus microplus exhibited results consistent with the previous studies with no major changes in microbiome including Coxiella-like endosymbionts as the major contributor. These findings suggest that geographical and environmental factors play a significant role in shaping the tick microbiome, with potential consequences for disease transmission and tick survivability. Further research is needed to elucidate the functional roles of these microbial shifts and their impact on public health and livestock in affected regions.
Collapse
Affiliation(s)
- Adeel Mumtaz Abbasi
- Department of Parasitology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
| | - Shiza Nasir
- Department of Parasitology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
| | - Amna Arshad Bajwa
- Department of Parasitology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
| | - Haroon Akbar
- Department of Parasitology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
| | - Muhammad Imran Rashid
- Department of Parasitology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
| |
Collapse
|
3
|
Manjunathachar HV, Kumar B, Parthasarathi BC, Chigure GM, Saravanan BC, Sankar M, Harish DR, de la Fuente J, Ghosh S. Cocktail vaccine for the management of Hyalomma anatolicum and Rhipicephalus microplus. Front Immunol 2024; 15:1471317. [PMID: 39628484 PMCID: PMC11611848 DOI: 10.3389/fimmu.2024.1471317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction Globally, ticks rank second only to mosquitoes as vectors of deadly pathogens affecting humans and first in transmitting animal pathogens, presenting a significant challenge to human wellness and sustainability of livestock-based industries. Traditional tick control via chemical acaricides impacts on the environment and has led to the emergence of multi-acaricide-resistant tick populations. Use of immunoprophylactic, along with other components of integrated tick management, holds the potential to mitigate tick infestations in a sustainable manner. To control multi-species tick infestations, the concept of a cocktail vaccine comprising of more than one antigens has emerged as a viable solution due to the inconsistent efficacy of single antigen-based immunization protocol. Methods In this study, a dual antigen cocktail immunization protocol was developed targeting ferritin2 (FER2) and tropomyosin (TPM) proteins, which are associated with ticks' essential cellular and physiological functions, like blood iron homeostasis and muscle contractions. Results Dual gene silencing of FER2 and TPM genes in Hyalomma anatolicum resulted in a 75.3% reduction in infested ticks, a 95.4% decrease in egg masses, and a complete loss of egg hatching when compared to control ticks. Microscopically, an altered ovarian cellular architecture, marked by vacuolation and reduced nucleus-to-cytoplasmic ratio were noted in the gene knocked down ticks. An immunization with cocktails of 300 µg dose of each protein, rHaFER2 and rHaTPM was standardized in a rat model and was used to immunize cross-bred (Bos indicus x B. taurus) male cattle with Montanide ISA 50V2 adjuvant on days 0, 28, and 49. A significant (p < 0.001) IgG and IgG2 antibody response was observed in the immunized animals with high IgG levels sustained until day 119 post-primary immunization, showing a 4.1-fold increase over the pre-immunization period. The animals were challenged with larvae and adults of H. anatolicum and larvae of Rhipicephalus microplus. Immunization with the cocktail antigen resulted an efficacy of 70% and 76% against H. anatolicum larvae and adults, respectively, and 54% against R. microplus infestations. Compared to single-antigen immunization, the immunization with cocktail antigens demonstrated higher protection against R. microplus and H. anatolicum ticks. The results advance the development of cocktail vaccines to control multiple tick species.
Collapse
Affiliation(s)
- Haranahally Vasanthachar Manjunathachar
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Binod Kumar
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Balasamudram Chandrasekhar Parthasarathi
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Gajanan M. Chigure
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Buddhi Chandrasekaran Saravanan
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Muthu Sankar
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Darasaguppe Ramachandra Harish
- Division of Animal Biotechnology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Srikanta Ghosh
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
- Indian Veterinary Research Institute (IVRI)-Eastern Regional Centre, Kolkata, West Bengal, India
| |
Collapse
|
4
|
de la Fuente J, Ghosh S, Lempereur L, Garrison A, Sprong H, Lopez-Camacho C, Maritz-Olivier C, Contreras M, Moraga-Fernández A, Bente DA. Interventions for the control of Crimean-Congo hemorrhagic fever and tick vectors. NPJ Vaccines 2024; 9:181. [PMID: 39353956 PMCID: PMC11445411 DOI: 10.1038/s41541-024-00970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic disease associated with its principal tick vector, Hyalomma spp. with increasing fatal incidence worldwide. Accordingly, CCHF is a World Health Organization-prioritized disease with the absence of effective preventive interventions and approved vaccines or effective treatments. This perspective raised from a multidisciplinary gap analysis considering a One Health approach beneficial for human and animal health and the environment exploring international collaborations, gaps and recommendations.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, 13005, Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Srikant Ghosh
- Entomology Laboratory, Parasitology Division, ICAR-Indian Veterinary Research Institute, Bareilly, 243122, Uttar Pradesh, India
- Eastern Regional Station, Indian Veterinary Research Institute, Kolkata, 700037, West Bengal, India
| | - Laetitia Lempereur
- One Health & Disease Control Group (NSAH-CJW), Food and Agriculture Organization of the United Nations, 00153, Rome, Italy
| | - Aura Garrison
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, 21702, USA
| | - Hein Sprong
- Centre for Infectious Disease Control (CIb), National Institute of Public Health and Environment (RIVM), 3720 MA, Bilthoven, The Netherlands
| | | | - Christine Maritz-Olivier
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, 13005, Ciudad Real, Spain
| | - Alberto Moraga-Fernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, 13005, Ciudad Real, Spain
| | - Dennis A Bente
- Galveston National Laboratory, Institute for Human Infection and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
5
|
Wang D, Zhang X, Li H, Wang T, Ma X, Yu Z, Wang F, Zhang Y, Liu J. Iron regulatory protein from the hard tick Haemaphysalis longicornis: characterization, function and assessment as a protective antigen. PEST MANAGEMENT SCIENCE 2024; 80:3922-3934. [PMID: 38520319 DOI: 10.1002/ps.8095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/20/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Ticks are blood-feeding ectoparasites with different host specificities and are capable of pathogen transmission. Iron regulatory proteins (IRPs) play crucial roles in iron homeostasis in vertebrates. However, their functions in ticks remain poorly understood. The aim of the present study was to investigate the characteristics, functions, molecular mechanisms, and the vaccine efficacy of IRP in the hard tick Haemaphysalis longicornis. RESULTS The full-length complementary DNA of IRP from Haemaphysalis longicornis (HlIRP) was 2973 bp, including a 2772 bp open reading frame. It is expressed throughout three developmental stages (larvae, nymphs, and adult females) and in various tissues (salivary glands, ovaries, midgut, and Malpighian tubules). Recombinant Haemaphysalis longicornis IRP (rHlIRP) was obtained via a prokaryotic expression system and exhibited aconitase, iron chelation, radical-scavenging, and hemolytic activities in vitro. RNA interference-mediated IRP knockdown reduced tick engorgement weight, ovary weight, egg mass weight, egg hatching rate, and ovary vitellin content, as well as prolonging the egg incubation period. Proteomics revealed that IRP may affect tick reproduction and development through proteasome pathway-associated, ribosomal, reproduction-related, and iron metabolism-related proteins. A trial on rabbits against adult Haemaphysalis longicornis infestation demonstrated that rHlIRP vaccine could significantly decrease engorged weight (by 10%), egg mass weight (by 16%) and eggs hatching rate (by 22%) of ticks. The overall immunization efficacy using rHlIRP against adult females was 41%. CONCLUSION IRP could limit reproduction and development in Haemaphysalis longicornis, and HlIRP was confirmed as a candidate vaccine antigen to impair tick iron metabolism and protect the host against tick infestation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaojing Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hongxia Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ting Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaojin Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Fang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yankai Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
6
|
de la Fuente J, Ghosh S. Evolution of tick vaccinology. Parasitology 2024; 151:1045-1052. [PMID: 38586999 PMCID: PMC11770523 DOI: 10.1017/s003118202400043x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Ticks represent a major concern for society worldwide. Ticks are also difficult to control, and vaccines represent the most efficacious, safe, economically feasible and environmentally sustainable intervention. The evolution of tick vaccinology has been driven by multiple challenges such as (1) Ticks are difficult to control, (2) Vaccines control tick infestations by reducing ectoparasite fitness and reproduction, (3) Vaccine efficacy against multiple tick species, (4) Impact of tick strain genetic diversity on vaccine efficacy, (5) Antigen combination to improve vaccine efficacy, (6) Vaccine formulations and delivery platforms and (7) Combination of vaccines with transgenesis and paratransgenesis. Tick vaccine antigens evolved from organ protein extracts to recombinant proteins to chimera designed by vaccinomics and quantum vaccinomics. Future directions will advance in these areas together with other novel technologies such as multiomics, AI and Big Data, mRNA vaccines, microbiota-driven probiotics and vaccines, and combination of vaccines with other interventions in collaboration with regions with high incidence of tick infestations and tick-borne diseases for a personalized medicine approach.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Srikant Ghosh
- Entomology Laboratory, Parasitology Division, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, UP, India
- Eastern Regional Station- Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| |
Collapse
|
7
|
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze G(G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines (Basel) 2024; 12:141. [PMID: 38400125 PMCID: PMC10891567 DOI: 10.3390/vaccines12020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.
Collapse
Affiliation(s)
| | - Hugues Fausther-Bovendo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| | - George (Giorgi) Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| |
Collapse
|
8
|
Zeb I, Parizi LF, Israr M, da Silva Vaz I, Ali A. Cross-species immunoprotective antigens (subolesin, ferritin 2 and P0) provide protection against Rhipicephalus sanguineus sensu lato. Parasit Vectors 2024; 17:3. [PMID: 38172894 PMCID: PMC10765945 DOI: 10.1186/s13071-023-06079-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Tick control is mostly hampered by the rise of acaricide-resistant tick populations. Significant efforts have focused on developing alternative control methods, including cross-species protective and/or cocktail-based anti-tick vaccines, to achieve protection against various tick species. METHODS In this study, full-length open reading frames encoding subolesin (SUB) from Rhipicephalus microplus and ferritin 2 (FER2) from Hyalomma anatolicum as well as the partial 60S acidic ribosomal protein (P0) from R. microplus were cloned, expressed in Escherichia coli and used as vaccine antigens against Rhipicephalus sanguineus sensu lato (R. sanguineus s.l.) infestation in rabbits. RESULTS In silico analyses revealed that the SUB, P0 and FER2 proteins were antigenic and displayed limited similarity to the host's homologous proteins. The proteins shared identities of 97.5%, 100% and 89.5% with their SUB, P0 and FER2 R. sanguineus s.l. orthologous sequences, respectively. Antibodies against each recombinant protein cross-recognized the native proteins in the different tissues and developmental stages of R. sanguineus s.l. Overall efficacy of the SUB, FER2 and cocktail (SUB+FER2+P0) vaccines against R. sanguineus s.l. infestation was 86.3%, 95.9% and 90.9%, respectively. CONCLUSIONS Both mono-antigen and the cocktail anti-tick vaccines affected the biological parameters of R. sanguineus s.l. infestation in the rabbit model, which could be extrapolated to its infested host under natural conditions. These findings support the possibility of using mono-antigenic and cocktail-based vaccines for large-scale anti-tick vaccine development against multiple tick species.
Collapse
Affiliation(s)
- Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Luís Fernando Parizi
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS, 91501-970, Brazil
| | | | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS, 91501-970, Brazil
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
9
|
Nandi A, Solanki V, Tiwari V, Sajjanar B, Sankar M, Saini M, Shrivastava S, Bhure SK, Ghosh S. Protective Efficacy of Multiple Epitope-Based Vaccine against Hyalomma anatolicum, Vector of Theileria annulata and Crimean-Congo Hemorrhagic Fever Virus. Vaccines (Basel) 2023; 11:vaccines11040881. [PMID: 37112793 PMCID: PMC10143353 DOI: 10.3390/vaccines11040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Hyalomma anatolicum is the principal vector for Theileria annulata, T. equi, and T. Lestoquardi in animals and the Crimean-Congo hemorrhagic fever virus in humans. Due to the gradual loss of efficacy of the available acaricides against field tick populations, the development of phytoacaricides and vaccines has been considered the two most critical components of the integrated tick management strategies. In the present study, in order to induce both cellular and humoral immune responses in the host against H. anatolicum, two multi-epitopic peptides (MEPs), i.e., VT1 and VT2, were designed. The immune-stimulating potential of the constructs was determined by in silicoinvestigation on allergenicity (non-allergen, antigenic (0.46 and 1.0046)), physicochemical properties (instability index 27.18 and 35.46), as well as the interaction of constructs with TLRs by docking and molecular dynamics analysis. The immunization efficacy of the MEPs mixed with 8% MontanideTM gel 01 PR against H. anatolicum larvae was determined as 93.3% and 96.9% in VT1- and VT2-immunized rabbits, respectively. Against adults, the efficacy was 89.9% and 86.4% in VT1- and VT2-immunized rabbits, respectively. A significant (p < 0.001) reduction in the anti-inflammatory cytokine (IL-4) and significantly higher IgG response was observed in a VT1-immunized group of rabbits as compared with the response observed in the control group. However, in the case of the VT2-immunized rabbits, an elevated anti-VT2 IgG and pro-inflammatory cytokine (IL-2) (>30 fold) along with a decreased level of anti-inflammatory cytokine IL-4 (0.75 times) was noted. The efficacy of MEP and its potential immune stimulatory responses indicate that it might be useful for tick management.
Collapse
Affiliation(s)
- Abhijit Nandi
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Basavaraj Sajjanar
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Muthu Sankar
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Mohini Saini
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Sameer Shrivastava
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - S K Bhure
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Srikant Ghosh
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| |
Collapse
|
10
|
Co-Immunization Efficacy of Recombinant Antigens against Rhipicephalus microplus and Hyalomma anatolicum Tick Infestations. Pathogens 2023; 12:pathogens12030433. [PMID: 36986356 PMCID: PMC10058648 DOI: 10.3390/pathogens12030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
The immunoprophylactic management of ticks is the most effective option to control tick infestations and counter spread the acaricide resistance problem worldwide. Several researchers reported an inconsistent efficacy of the single antigen-based immunization of hosts against different tick species. In the present study, to develop a multi-target immunization protocol, proteins from Rhipicephalus microplus BM86 and Hyalomma anatolicum subolesin (SUB) and tropomyosin (TPM) were targeted to evaluate the cross-protective potential. The sequence identities of the BM86, SUB, and TPM coding genes amongst Indian tick isolates of targeted species were 95.6–99.8%, 98.7–99.6%, and 98.9–99.9%, respectively, while at the predicted amino acid level, the identities were 93.2 to 99.5, 97.6 to 99.4, and 98.2 to 99.3%. The targeted genes were expressed in the eukaryotic expression system, pKLAC2-Kluyveromyces lactis, and 100 µg each of purified recombinant protein (Bm86-89 kDa, SUB-21 kDa, and TPM-36 kDa) mixed with adjuvant was injected individually through the intramuscular route at different sites of the body on days 0, 30, and 60 to immunize cross-bred cattle. Post-immunization, a statistically significant (p < 0.001) antibody response (IgG, IgG1, and IgG2) in comparison to the control, starting from 15 to 140 days, against each antigen was recorded. Following multi-antigen immunization, the animals were challenged twice with the larvae of R. microplus and H. anatolicum and theadults of H. anatolicum, and a significant vaccine efficacy of 87.2% and 86.2% against H. anatolicum larvae and adults, respectively, and 86.7% against R. microplus was obtained. The current study provides significant support to develop a multi-antigen vaccine against cattle tick species.
Collapse
|
11
|
Abbas MN, Jmel MA, Mekki I, Dijkgraaf I, Kotsyfakis M. Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development. Int J Mol Sci 2023; 24:4969. [PMID: 36902400 PMCID: PMC10003026 DOI: 10.3390/ijms24054969] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ticks can seriously affect human and animal health around the globe, causing significant economic losses each year. Chemical acaricides are widely used to control ticks, which negatively impact the environment and result in the emergence of acaricide-resistant tick populations. A vaccine is considered as one of the best alternative approaches to control ticks and tick-borne diseases, as it is less expensive and more effective than chemical controls. Many antigen-based vaccines have been developed as a result of current advances in transcriptomics, genomics, and proteomic techniques. A few of these (e.g., Gavac® and TickGARD®) are commercially available and are commonly used in different countries. Furthermore, a significant number of novel antigens are being investigated with the perspective of developing new anti-tick vaccines. However, more research is required to develop new and more efficient antigen-based vaccines, including on assessing the efficiency of various epitopes against different tick species to confirm their cross-reactivity and their high immunogenicity. In this review, we discuss the recent advancements in the development of antigen-based vaccines (traditional and RNA-based) and provide a brief overview of recent discoveries of novel antigens, along with their sources, characteristics, and the methods used to test their efficiency.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Imen Mekki
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Ingrid Dijkgraaf
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
12
|
Bonnet SI, Vourc’h G, Raffetin A, Falchi A, Figoni J, Fite J, Hoch T, Moutailler S, Quillery E. The control of Hyalomma ticks, vectors of the Crimean–Congo hemorrhagic fever virus: Where are we now and where are we going? PLoS Negl Trop Dis 2022; 16:e0010846. [PMCID: PMC9671348 DOI: 10.1371/journal.pntd.0010846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
At a time of major global, societal, and environmental changes, the shifting distribution of pathogen vectors represents a real danger in certain regions of the world as generating opportunities for emergency. For example, the recent arrival of the Hyalomma marginatum ticks in southern France and the concurrent appearance of cases of Crimean–Congo hemorrhagic fever (CCHF)—a disease vectored by this tick species—in neighboring Spain raises many concerns about the associated risks for the European continent. This context has created an urgent need for effective methods for control, surveillance, and risk assessment for ticks and tick-borne diseases with a particular concern regarding Hyalomma sp. Here, we then review the current body of knowledge on different methods of tick control—including chemical, biological, genetical, immunological, and ecological methods—and the latest developments in the field, with a focus on those that have been tested against ticks from the genus Hyalomma. In the absence of a fully and unique efficient approach, we demonstrated that integrated pest management combining several approaches adapted to the local context and species is currently the best strategy for tick control together with a rational use of acaricide. Continued efforts are needed to develop and implement new and innovative methods of tick control. Disease-bearing Hyalomma ticks are an increasingly emerging threat to humans and livestock worldwide. Various chemical, biological, genetic, and ecological methods for tick control have been developed, with variable efficiencies. Today, the best tick control strategy involves an integrated pest management approach.
Collapse
Affiliation(s)
- Sarah I. Bonnet
- Animal Health Department, INRAE, Nouzilly, France
- Ecology and Emergence of Arthropod-borne Pathogens Unit, Institut Pasteur, CNRS UMR 2000, Université Paris-cité, Paris, France
- * E-mail:
| | - Gwenaël Vourc’h
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l’Etoile, France
| | - Alice Raffetin
- Reference Centre for Tick-Borne Diseases, Paris and Northern Region, Department of Infectious Diseases, General Hospital of Villeneuve-Saint-Georges, 40 allée de la Source, Villeneuve-Saint-Georges, France
- EA 7380 Dynamyc, UPEC, Créteil, France
- Unité de recherche EpiMAI, USC ANSES, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Alessandra Falchi
- UR7310, Faculté de Sciences, Campus Grimaldi, Université de Corse, Corte, France
| | - Julie Figoni
- Santé publique France, 94410 Saint-Maurice, France
| | - Johanna Fite
- French Agency for Food, Environmental and Occupational Health & Safety, 14 rue Pierre et Marie Curie, Maisons-Alfort Cedex, France
| | | | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Elsa Quillery
- French Agency for Food, Environmental and Occupational Health & Safety, 14 rue Pierre et Marie Curie, Maisons-Alfort Cedex, France
| |
Collapse
|
13
|
Oleaga A, Gonzalez-Pérez S, Pérez-Sanchez R. First molecular and functional characterisation of ferritin 2 proteins from Ornithodoros argasid ticks. Vet Parasitol 2022; 304:109684. [DOI: 10.1016/j.vetpar.2022.109684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 10/19/2022]
|
14
|
Identification and Characterization of Immunodominant Proteins from Tick Tissue Extracts Inducing a Protective Immune Response against Ixodes ricinus in Cattle. Vaccines (Basel) 2021; 9:vaccines9060636. [PMID: 34200738 PMCID: PMC8229163 DOI: 10.3390/vaccines9060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Ixodes ricinus is the main vector of tick-borne diseases in Europe. An immunization trial of calves with soluble extracts of I. ricinus salivary glands (SGE) or midgut (ME) previously showed a strong response against subsequent tick challenge, resulting in diminished tick feeding success. Immune sera from these trials were used for the co-immunoprecipitation of tick tissue extracts, followed by LC-MS/MS analyses. This resulted in the identification of 46 immunodominant proteins that were differentially recognized by the serum of immunized calves. Some of these proteins had previously also drawn attention as potential anti-tick vaccine candidates using other approaches. Selected proteins were studied in more detail by measuring their relative expression in tick tissues and RNA interference (RNAi) studies. The strongest RNAi phenotypes were observed for MG6 (A0A147BXB7), a protein containing eight fibronectin type III domains predominantly expressed in tick midgut and ovaries of feeding females, and SG2 (A0A0K8RKT7), a glutathione-S-transferase that was found to be upregulated in all investigated tissues upon feeding. The results demonstrated that co-immunoprecipitation of tick proteins with host immune sera followed by protein identification using LC-MS/MS is a valid approach to identify antigen–antibody interactions, and could be integrated into anti-tick vaccine discovery pipelines.
Collapse
|
15
|
Analysis of Genetic Diversity in Indian Isolates of Rhipicephalus microplus Based on Bm86 Gene Sequence. Vaccines (Basel) 2021; 9:vaccines9030194. [PMID: 33652549 PMCID: PMC7996562 DOI: 10.3390/vaccines9030194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
The control of cattle tick, Rhipicephalus microplus, is focused on repeated use of acaricides. However, due to growing acaricide resistance and residues problem, immunization of animals along with limited use of effective acaricides is considered a suitable option for the control of tick infestations. To date, more than fifty vaccine candidates have been identified and tested worldwide, but two vaccines were developed using the extensively studied candidate, Bm86. The main reason for limited vaccine commercialization in other countries is genetic diversity in the Bm86 gene leading to considerable variation in vaccine efficacy. India, with 193.46 million cattle population distributed in 28 states and 9 union territories, is suffering from multiple tick infestation dominated by R. microplus. As R. microplus has developed multi-acaricide resistance, an efficacious vaccine may provide a sustainable intervention for tick control. Preliminary experiments revealed that the presently available commercial vaccine based on the BM86 gene is not efficacious against Indian strain. In concert with the principle of reverse vaccinology, genetic polymorphism of the Bm86 gene within Indian isolates of R. microplus was studied. A 578 bp conserved nucleotide sequences of Bm86 from 65 R. microplus isolates collected from 9 Indian states was sequenced and revealed 95.6-99.8% and 93.2-99.5% identity in nucleotides and amino acids sequences, respectively. The identities of nucleotides and deduced amino acids were 94.7-99.8% and 91.8-99.5%, respectively, between full-length sequence (orf) of the Bm86 gene of IVRI-I strain and published sequences of vaccine strains. Six nucleotides deletion were observed in Indian Bm86 sequences. Four B-cell epitopes (D519-K554, H563-Q587, C598-T606, T609-K623), which are present in the conserved region of the IVRI-I Bm86 sequence, were selected. The results confirm that the use of available commercial Bm86 vaccines is not a suitable option against Indian isolates of R. microplus. A country-specific multi-epitope Bm86 vaccine consisting of four specific B-cell epitopes along with candidate molecules, subolesin and tropomyosin in chimeric/co-immunization format may provide a sustainable option for implementation in an integrated tick management system.
Collapse
|
16
|
Reynard O, Ritter M, Martin B, Volchkov V. [Crimean-Congo hemorrhagic fever, a future health problem in France?]. Med Sci (Paris) 2021; 37:135-140. [PMID: 33591256 DOI: 10.1051/medsci/2020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Crimean-Congo hemorrhagic fever virus (CCHFV) is the etiological agent of a severe hemorrhagic fever affecting Africa, Asia and southern Europe. Climate changes of recent decades have recently led to a rise in the distribution of this virus. Still few scientific data are available on the biology of its vector, the tick, or its own biology, but the proven presence of human infections observed in Spain and animals with positive serology in Corsica should focus our attention on this pathogen. This review takes stock of the epidemiologic evolution of CCHF in Europe, notably in France.
Collapse
Affiliation(s)
- Olivier Reynard
- CIRI, Centre international de recherche en infectiologie, Bases moléculaires de la pathogénie virale, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 avenue Tony-Garnier, 69365, Lyon, France
| | - Maureen Ritter
- CIRI, Centre international de recherche en infectiologie, Bases moléculaires de la pathogénie virale, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 avenue Tony-Garnier, 69365, Lyon, France
| | - Baptiste Martin
- CIRI, Centre international de recherche en infectiologie, Bases moléculaires de la pathogénie virale, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 avenue Tony-Garnier, 69365, Lyon, France
| | - Viktor Volchkov
- CIRI, Centre international de recherche en infectiologie, Bases moléculaires de la pathogénie virale, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 avenue Tony-Garnier, 69365, Lyon, France
| |
Collapse
|
17
|
Kumar B, Manjunathachar HV, Ghosh S. A review on Hyalomma species infestations on human and animals and progress on management strategies. Heliyon 2020; 6:e05675. [PMID: 33319114 PMCID: PMC7726666 DOI: 10.1016/j.heliyon.2020.e05675] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/23/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The Hyalomma species of ticks have gained additional attention due to their role in the transmission of Theileria annulata infection in animals and the Crimean-Congo Haemorrhagic Fever (CCHF) virus in humans. Apart from these, many other pathogens viz., other species of Theileria, a few species of Babesia, Rickettsia and viruses are either maintained or transmitted by this tick species. The medium to large size species with longer proboscis has inflicted additional burden on the overall impact of tick infestations. Being a multi-host species, management of the species is very challenging. Presently, the traditional method of tick management using chemical acaricides is found insufficient and unsustainable. Henceforth, the overall burden of tick infestations and tick-borne diseases are increasing gradually. After the successful development of vaccines against cattle tick, Rhipicephalus microplus, the anti-Hyalomma vaccine is considered a feasible and sustainable management option. In the recent past research on herbal acaricides and its possible application for tick control seems promising. Other eco-friendly methods are still under experimental stage. The present review is focused on impact of Hyalomma species infestation on human and animal health with special emphasis on progress on its sustainable management.
Collapse
Affiliation(s)
- Binod Kumar
- Department of Veterinary Parasitology, College of Veterinary Science & Animal Husbandry, Junagadh Agricultural University, Junagadh 362001, Gujarat, India
| | | | - Srikanta Ghosh
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, India
| |
Collapse
|
18
|
Kamran K, Ali A, Villagra CA, Bazai ZA, Iqbal A, Sajid MS. Hyalomma anatolicum resistance against ivermectin and fipronil is associated with indiscriminate use of acaricides in southwestern Balochistan, Pakistan. Parasitol Res 2020; 120:15-25. [PMID: 33225403 DOI: 10.1007/s00436-020-06981-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022]
Abstract
Ivermectin and fipronil have been used regularly to control the hard tick Hyalomma anatolicum (Acari: Ixodidae) in domestic ruminants for more than a half-decade in Balochistan, Pakistan. Inappropriate and indiscriminate use of these acaricides has resulted in the development of resistances in tick species. In this work, acaricides (ivermectin and fipronil) resistance was evaluated in H. anatolicum through in vitro and in vivo bioassays in a horse farm of Quetta, Balochistan province, Pakistan. A participatory epidemiological survey was conducted to assess potential risk factors associated with the development of acaricide resistance in H. anatolicum. The results of the epidemiological survey revealed that the horse keepers did not follow the manufacturer's instructions for the use of acaricides and applied indiscriminate doses of acaricides. The results of in vitro bioassays (adult immersion test and larval immersion test) showed that fipronil and ivermectin have protective efficacy against H. anatolicum. The results of in vivo bioassay (adult-tick mortality assay) revealed that fipronil had a higher efficacy (78.16%) than ivermectin (49.94%). More than 80% of tick mortality was not achieved in any bioassays, even for the highest acaricide concentration (100 ppm), which suggests the development of acaricide resistance against fipronil and ivermectin. This study highlights the urgency to implement a country-wide awareness about resistance monitoring and effective tick control. Graphical abstract.
Collapse
Affiliation(s)
- Kashif Kamran
- Department of Zoology, University of Balochistan, Quetta, Pakistan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Cristian A Villagra
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | | - Asim Iqbal
- Department of Zoology, University of Balochistan, Quetta, Pakistan
| | - Muhammad Sohail Sajid
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
19
|
Githaka NW, Konnai S, Isezaki M, Goto S, Xavier MA, Fujisawa S, Yamada S, Okagawa T, Maekawa N, Logullo C, da Silva Vaz I, Murata S, Ohashi K. Identification and functional analysis of ferritin 2 from the Taiga tick Ixodes persulcatus Schulze. Ticks Tick Borne Dis 2020; 11:101547. [PMID: 32993953 DOI: 10.1016/j.ttbdis.2020.101547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/14/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022]
Abstract
Ferritin 2 (FER2) is an iron storage protein, which has been shown to be critical for iron homeostasis during blood feeding and reproduction in ticks and is therefore suitable as a component for anti-tick vaccines. In this study, we identified the FER2 of Ixodes persulcatus, a major vector for zoonotic diseases such as Lyme borreliosis and tick-borne relapsing fever in Japan, and investigated its functions. Ixodes persulcatus-derived ferritin 2 (Ip-FER2) showed concentration-dependent iron-binding ability and high amino acid conservation, consistent with FER2s of other tick species. Vaccines containing the recombinant Ip-FER2 elicited a significant reduction of the engorgement weight of adult I. persulcatus. Interestingly, the reduction of engorgement weight was also observed in Ixodes ovatus, a sympatric species of I. persulcatus. In silico analyses of FER2 sequences of I. persulcatus and other ticks showed a greater similarity with I. scapularis and I. ricinus and lesser similarity with Hyalomma anatolicum, Haemaphysalis longicornis, Rhipicephalus microplus, and R. appendiculatus. Moreover, it was observed that the tick FER2 sequences possess conserved regions within the primary structures, and in silico epitope mapping analysis revealed that antigenic regions were also conserved, particularly among Ixodes spp ticks. In conclusion, the data support further protective tick vaccination applications using the Ip-FER2 antigens identified herein.
Collapse
Affiliation(s)
- Naftaly Wang'ombe Githaka
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan.
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Shinya Goto
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Shinji Yamada
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
20
|
Ghafar A, Gasser RB, Rashid I, Ghafoor A, Jabbar A. Exploring the prevalence and diversity of bovine ticks in five agro-ecological zones of Pakistan using phenetic and genetic tools. Ticks Tick Borne Dis 2020; 11:101472. [PMID: 32723634 DOI: 10.1016/j.ttbdis.2020.101472] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/23/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
Tick infestation is a leading cause of tick-worry and tick-borne diseases in livestock and associated economic losses in tropical and subtropical regions of the world. The cattle and buffalo populations in Pakistan are exposed to tick infestation throughout the year, but very little is known about the biology, diversity and distribution of tick species across different agro-ecological zones (AEZ) of the country. The present study aimed to investigate the prevalence (number of bovines infested with ticks out of the investigated population) and diversity of hard ticks infesting bovines in 30 villages located in five distinct AEZs (i.e. Arid, Indus delta, Northern irrigated plain, Sandy desert and Southern irrigated plain). We collected a total of 774 ticks (adult and nymphs) from cattle (n = 116) and water buffaloes (n = 88) on small-holder dairy farms (with <10 bovids per establishment) from September to November 2017. The overall tick prevalence was 46.1% (cattle: 47.9%; buffaloes: 44%), which varied significantly from 22.2% in the Indus delta to 70.5% in the Sandy desert. Tick prevalence was slightly higher in female (46.5%) than male animals (45%), and higher in calves (i.e. ≤ 1 year of age) (55%) than in young animals (i.e. up to 3 years of age) (39%) and adults (48%). Five tick species - Hyalomma anatolicum, Hyalomma hussaini, Hyalomma scupense, Rhipicephalus microplus and Rhipicephalus annulatus - were identified morphologically and then genetically. Genetic identification, achieved using the sequences of two mitochondrial (cytochrome c oxidase subunit 1 and 16S) and one nuclear ribosomal (second internal transcribed spacer) regions, was consistent with the morphological findings. Phylogenetic analyses of the DNA sequence data sets showed that the five species of tick identified here were closely related to the same species or closely related species from within and outside of Pakistan. Of five presently recognised taxa within the R. microplus complex, two were identified herein, including the R. microplus clade C and R. annulatus. This investigation provides the first genetic evidence of the occurrence of R. annulatus in Pakistan as well as Hy. hussaini and Hy. scupense in bovines specifically in the provinces of Sindh and Punjab, respectively. The present findings emphasise the importance of combining morphological and molecular approaches to study the diversity of ticks. Further longitudinal studies are required to establish seasonal variations in the prevalence and distribution of bovine ticks in different AEZs of Pakistan.
Collapse
Affiliation(s)
- Abdul Ghafar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC, Australia
| | - Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Aamir Ghafoor
- University Diagnostic Laboratory, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC, Australia.
| |
Collapse
|
21
|
de la Fuente J, Estrada-Peña A, Contreras M. Modeling tick vaccines: a key tool to improve protection efficacy. Expert Rev Vaccines 2020; 19:217-225. [PMID: 32192377 DOI: 10.1080/14760584.2020.1745635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The development of more effective vaccines for the control of tick infestations and pathogen transmission is essential for prevention and control of tick-borne diseases worldwide. Recently, the application of omics technologies has advanced the identification of tick protective antigens. However, other factors such as vaccine formulation and implementation need to be addressed, and tick vaccine modeling will contribute to improve the efficacy of vaccination strategies.Areas covered: In this review, we summarized current information on tick vaccine correlates of protection and modeling, and proposed new approaches to improve vaccine evaluation and implementation using as a proof-of-concept the Hyalomma marginatum-Crimean-Congo hemorrhagic fever virus model due to its high mortality rate and potentially growing impact on human health.Expert opinion: Vaccines are required as an effective and environmentally sound intervention for the control of tick-borne diseases affecting human and animal health worldwide. Despite recent advances in the identification of candidate tick protective antigens, research on vaccine formulation and implementation need to be addressed to improve tick vaccine control efficacy. As shown here, modeling of the vaccination strategies against ticks and transmitted pathogens will contribute to vaccine development by guiding the selection of appropriate antigen combinations, target hosts, and vaccination time schedule.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto De Investigación En Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - Marinela Contreras
- SaBio, Instituto De Investigación En Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| |
Collapse
|
22
|
Contreras M, Karlsen M, Villar M, Olsen RH, Leknes LM, Furevik A, Yttredal KL, Tartor H, Grove S, Alberdi P, Brudeseth B, de la Fuente J. Vaccination with Ectoparasite Proteins Involved in Midgut Function and Blood Digestion Reduces Salmon Louse Infestations. Vaccines (Basel) 2020; 8:vaccines8010032. [PMID: 31963779 PMCID: PMC7157638 DOI: 10.3390/vaccines8010032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
Infestation with the salmon louse Lepeophtheirus salmonis (Copepoda, Caligidae) affects Atlantic salmon (Salmo salar L.) production in European aquaculture. Furthermore, high levels of salmon lice in farms significantly increase challenge pressure against wild salmon populations. Currently, available control methods for salmon louse have limitations, and vaccination appears as an attractive, environmentally sound strategy. In this study, we addressed one of the main limitations for vaccine development, the identification of candidate protective antigens. Based on recent advances in tick vaccine research, herein, we targeted the salmon louse midgut function and blood digestion for the identification of candidate target proteins for the control of ectoparasite infestations. The results of this translational approach resulted in the identification and subsequent evaluation of the new candidate protective antigens, putative Toll-like receptor 6 (P30), and potassium chloride, and amino acid transporter (P33). Vaccination with these antigens provided protection in Atlantic salmon by reducing adult female (P33) or chalimus II (P30) sea lice infestations. These results support the development of vaccines for the control of sea lice infestations.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
| | - Marius Karlsen
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Rolf Hetlelid Olsen
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Lisa Marie Leknes
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Anette Furevik
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Karine Lindmo Yttredal
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Haitham Tartor
- Norwegian Veterinary Institute, 0106 Oslo, Norway; (H.T.); (S.G.)
| | - Soren Grove
- Norwegian Veterinary Institute, 0106 Oslo, Norway; (H.T.); (S.G.)
- Institute of Marine Research, 5005 Bergen, Norway
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
| | - Bjorn Brudeseth
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
- Correspondence: (B.B.); (J.d.l.F.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence: (B.B.); (J.d.l.F.)
| |
Collapse
|
23
|
Rego ROM, Trentelman JJA, Anguita J, Nijhof AM, Sprong H, Klempa B, Hajdusek O, Tomás-Cortázar J, Azagi T, Strnad M, Knorr S, Sima R, Jalovecka M, Fumačová Havlíková S, Ličková M, Sláviková M, Kopacek P, Grubhoffer L, Hovius JW. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors 2019; 12:229. [PMID: 31088506 PMCID: PMC6518728 DOI: 10.1186/s13071-019-3468-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Hematophagous arthropods are responsible for the transmission of a variety of pathogens that cause disease in humans and animals. Ticks of the Ixodes ricinus complex are vectors for some of the most frequently occurring human tick-borne diseases, particularly Lyme borreliosis and tick-borne encephalitis virus (TBEV). The search for vaccines against these diseases is ongoing. Efforts during the last few decades have primarily focused on understanding the biology of the transmitted viruses, bacteria and protozoans, with the goal of identifying targets for intervention. Successful vaccines have been developed against TBEV and Lyme borreliosis, although the latter is no longer available for humans. More recently, the focus of intervention has shifted back to where it was initially being studied which is the vector. State of the art technologies are being used for the identification of potential vaccine candidates for anti-tick vaccines that could be used either in humans or animals. The study of the interrelationship between ticks and the pathogens they transmit, including mechanisms of acquisition, persistence and transmission have come to the fore, as this knowledge may lead to the identification of critical elements of the pathogens' life-cycle that could be targeted by vaccines. Here, we review the status of our current knowledge on the triangular relationships between ticks, the pathogens they carry and the mammalian hosts, as well as methods that are being used to identify anti-tick vaccine candidates that can prevent the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Ryan O. M. Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Jos J. A. Trentelman
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - Juan Anguita
- CIC bioGUNE, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hein Sprong
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | | | - Tal Azagi
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martin Strnad
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sarah Knorr
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Marie Jalovecka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sabína Fumačová Havlíková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Ličková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Sláviková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petr Kopacek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Libor Grubhoffer
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Joppe W. Hovius
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| |
Collapse
|