1
|
Wang M, Zhang Q, Ju R, Xia J, Xu C, Chen W, Zhang X. Characterization of TCRβ and IGH Repertoires in the Spleen of Two Chicken Lines with Differential ALV-J Susceptibility Under Normal and Infection Conditions. Animals (Basel) 2025; 15:334. [PMID: 39943104 PMCID: PMC11816060 DOI: 10.3390/ani15030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigates the immunological factors underlying the differential susceptibility of two chicken strains, E- and M-lines, to avian leukosis virus subgroup J (ALV-J). During the eradication of avian leukosis at a chicken breeder farm in Guangdong, we observed strain-specific differences in susceptibility to ALV-J. Moreover, E-line chickens exhibited a slower antibody response to ALV-J compared to M-line chickens. As the T cell receptor (TCR) and B cell receptor (BCR) are critical for antigen recognition, their activation triggers specific immune responses, including antibody production. Using high-throughput sequencing, we characterized the T cell receptor beta (TCRβ) and immunoglobulin heavy chain (IGH) repertoires in spleen tissues from both chicken strains. The M-line demonstrated higher clonal diversity in both TCRβ and IGH repertoires under normal conditions compared to the E-line, suggesting a broader baseline antigen recognition capacity. Following ALV-J infection, the TCRβ repertoire diversity remained unchanged, while the IGH repertoire displayed distinct clonal expansion patterns and complementarity-determining region 3 (CDR3) length distributions between the two lines, potentially affecting their ability to recognize ALV-J antigens. Our study provides the first comprehensive comparison of TCRβ and IGH repertoire dynamics in chickens with different ALV-J susceptibilities, offering new insights into the molecular and immunological mechanisms underlying resistance to ALV-J.
Collapse
Affiliation(s)
- Meihuizi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.W.); (Q.Z.); (R.J.); (J.X.); (C.X.); (W.C.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Qihong Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.W.); (Q.Z.); (R.J.); (J.X.); (C.X.); (W.C.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Rongyang Ju
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.W.); (Q.Z.); (R.J.); (J.X.); (C.X.); (W.C.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Junliang Xia
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.W.); (Q.Z.); (R.J.); (J.X.); (C.X.); (W.C.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Chengxun Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.W.); (Q.Z.); (R.J.); (J.X.); (C.X.); (W.C.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Weiding Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.W.); (Q.Z.); (R.J.); (J.X.); (C.X.); (W.C.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.W.); (Q.Z.); (R.J.); (J.X.); (C.X.); (W.C.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Wang P, Wang J, Wang N, Xue C, Han Z. The coinfection of ALVs causes severe pathogenicity in Three-Yellow chickens. BMC Vet Res 2024; 20:41. [PMID: 38302973 PMCID: PMC10832069 DOI: 10.1186/s12917-024-03896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
The coinfection of ALVs (ALV-J plus ALV-A or/and ALV-B) has played an important role in the incidence of tumors recently found in China in local breeds of yellow chickens. The study aims to obtain a better knowledge of the function and relevance of ALV coinfection in the clinical disease of avian leukosis, as well as its unique effect on the pathogenicity in Three-yellow chickens. One-day-old Three-yellow chicks (one day old) were infected with ALV-A, ALV-B, and ALV-J mono-infections, as well as ALV-A + J, ALV-B + J, and ALV-A + B + J coinfections, via intraperitoneal injection, and the chicks were then grown in isolators until they were 15 weeks old. The parameters, including the suppression of body weight gain, immune organ weight, viremia, histopathological changes and tumor incidence, were observed and compared with those of the uninfected control birds. The results demonstrated that coinfection with ALVs could induce more serious suppression of body weight gain (P < 0.05), damage to immune organs (P < 0.05) and higher tumor incidences than monoinfection, with triple infection producing the highest pathogenicity. The emergence of visible tumors and viremia occurred faster in the coinfected birds than in the monoinfected birds. These findings demonstrated that ALV coinfection resulted in considerably severe pathogenic and immunosuppressive consequences.
Collapse
Affiliation(s)
- Peikun Wang
- Institute of Microbe and Host Health, Linyi University, Linyi, 276000, Shandong, China.
| | - Jing Wang
- Animal Epidemic Disease Anticipatory Control Center, Lanshan District, Linyi, 276005, Shandong, China
| | - Na Wang
- Institute of Microbe and Host Health, Linyi University, Linyi, 276000, Shandong, China
| | - Cong Xue
- Institute of Microbe and Host Health, Linyi University, Linyi, 276000, Shandong, China
| | - Zhaoqing Han
- Institute of Microbe and Host Health, Linyi University, Linyi, 276000, Shandong, China
| |
Collapse
|
3
|
Wu L, Li Y, Chen X, Yang Y, Fang C, Gu Y, Liu J, Liang X, Yang Y. Isolation and characterization of avian leukosis virus subgroup J associated with hemangioma and myelocytoma in layer chickens in China. Front Vet Sci 2022; 9:970818. [PMID: 36246325 PMCID: PMC9555167 DOI: 10.3389/fvets.2022.970818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
A strain of avian leukosis virus (ALV) belonging to a new envelope subgroup J (ALV-J) emerged in 1988 as a new subgroup of ALV and spread rapidly throughout the world. Due to the infection and spread of ALV-J, the global poultry industry experienced a significant loss. Although the disease had been prevented and controlled effectively by culling domestic chickens in the infected zone, a few field cases of ALV-J infection were reported in China in recent years. This study was conducted to characterize the genome and analyze the lesions and histopathology of the ALV-J strain named HB2020, which was isolated from layer chickens in Hubei Province, China. The full-length proviral genome sequence analysis of ALV-J HB2020 revealed that it was a recombinant strain of ev-1 and HPRS-103 in the gag gene in comparison to ALV-J prototype HPRS-103. In the 3′-untranslated region (3'UTR) of the nucleotide sequence, there were found 205-base pairs (bp) deletion, of which 175 were detected in the redundant transmembrane (rTM) region. Besides, the surface glycoprotein gene gp85 had five mutations in a conservative site, whereas the transmembrane protein gene gp37 was relatively conserved. The animal experiments conducted later on this strain have shown that HB2020 can cause various neoplastic lesions in chickens, including enlarged livers with hemangiomas and spleens with white nodules. Additionally, as the exposure time increased, the number of tumor cells that resembled myelocytes in the blood smears of infected chickens gradually increased. These results indicated that HB2020 on recombination with ALV subgroup E (ALV-E) and ALV-J could induce severe hemangiomas and myelocytomas. This inference might provide a molecular basis for further research about the pathogenicity of ALV and emphasize the need for control and prevention of avian leukosis.
Collapse
|
4
|
Wang Q, Su Q, Liu B, Li Y, Sun W, Liu Y, Xue R, Chang S, Wang Y, Zhao P. Enhanced Antiviral Ability by a Combination of Zidovudine and Short Hairpin RNA Targeting Avian Leukosis Virus. Front Microbiol 2022; 12:808982. [PMID: 35250911 PMCID: PMC8889011 DOI: 10.3389/fmicb.2021.808982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Avian leukosis virus (ALV) causes tumor diseases in poultry and is circulating all over the world, leading to significant economic losses. In addition, mixed infection of ALV with other viruses is very common and is often reported to contaminate live vaccines. At present, there is no effective method to suppress the replication of ALV in vitro, so it is very difficult to remove it in mixed infection. As a retrovirus, the replication of ALV can be limited by reverse transcriptase (RT) inhibitors like zidovudine (AZT), but it also causes nontargeted cytotoxicity. To find the optimal solution in cytotoxicity and inhibition efficiency in vitro culture system, we firstly designed a combination therapy of AZT and short hairpin RNA (shRNA) targeting ALV and then verified its efficiency by multiple biological methods. Results showed that shRNA can effectively inhibit the expression of RT and then limit the replication of ALV. The combination of AZT and shRNA can significantly improve the antiviral efficiency in viral replication, shedding, and provirus assembly under the condition of low cytotoxicity. Overall, in this study, the combination therapy of AZT and shRNA targeting ALV showed excellent antiviral performance against ALV in vitro culture system. This method can be applied to multiple scenarios, such as the removal of ALV in mixed infection or the purification of contaminated vaccine strains.
Collapse
Affiliation(s)
- Qun Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Qi Su
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Bowen Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yan Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Wanli Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yanxue Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Ruyu Xue
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| |
Collapse
|
5
|
WHOLE-GENOME ANALYSIS REVEALS POSSIBLE SOURCES OF ALV-J INFECTION IN AN ANYI TILE-LIKE GREY CHICKEN FLOCK. Poult Sci 2022; 101:101764. [PMID: 35381497 PMCID: PMC8980333 DOI: 10.1016/j.psj.2022.101764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
|
6
|
Li H, Tan M, Zhang F, Ji H, Zeng Y, Yang Q, Tan J, Huang J, Su Q, Huang Y, Kang Z. Diversity of Avian leukosis virus subgroup J in local chickens, Jiangxi, China. Sci Rep 2021; 11:4797. [PMID: 33637946 PMCID: PMC7910287 DOI: 10.1038/s41598-021-84189-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/12/2021] [Indexed: 12/02/2022] Open
Abstract
Avian leukosis caused by avian leukosis virus (ALV) is one of the most severe diseases endangering the poultry industry. When the eradication measures performed in commercial broilers and layers have achieved excellent results, ALV in some local chickens has gradually attracted attention. Since late 2018, following the re-outbreak of ALV-J in white feather broilers in China, AL-like symptoms also suddenly broke out in some local flocks, leading to great economic losses. In this study, a systematic epidemiological survey was carried out in eight local chicken flocks in Jiangxi Province, China, and 71 strains were finally isolated from 560 samples, with the env sequences of them being successfully sequenced. All of those new isolates belong to subgroup J but they have different molecular features and were very different from the strains that emerged in white feature broilers recently, with some strains being highly consistent with those previously isolated from commercial broilers, layers and other flocks or even isolated from USA and Russian, suggesting these local chickens have been acted as reservoirs to accumulate various ALV-J strains for a long time. More seriously, phylogenetic analysis shows that there were also many novel strains emerging and in a separate evolutionary branch, indicating several new mutated ALVs are being bred in local chickens. Besides, ALV-J strains isolated in this study can be further divided into ten groups, while there were more or fewer groups in different chickens, revealing that ALV may cross propagate in those flocks. The above analyses explain the complex background and future evolution trend of ALV-J in Chinese local chickens, providing theoretical support for the establishment of corresponding prevention and control measures.
Collapse
Affiliation(s)
- Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Meifang Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Huayuan Ji
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Yanbing Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Qun Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Jia Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China.
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China.
| |
Collapse
|
7
|
Li Q, Wang P, Li M, Lin L, Shi M, Li H, Deng Q, Teng H, Mo M, Wei T, Wei P. Recombinant subgroup B avian leukosis virus combined with the subgroup J env gene significantly increases its pathogenicity. Vet Microbiol 2020; 250:108862. [PMID: 33007608 DOI: 10.1016/j.vetmic.2020.108862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/20/2020] [Indexed: 11/29/2022]
Abstract
The differences among different sub-groups of the avian leukosis virus (ALV) genome are mainly concentrated in the env gene, which binds to cell-specific receptors and determines the characteristics of viral tropism and pathogenicity. In this study, two rescued viruses rGX15MM6-2 (ALV of subgroup J, ALV-J) and rGX14FF03 (ALV of subgroup B, ALV-B) and a recombinant virus rALV-B-Jenv (ALV-B's backbone with ALV-J's env) were generated and tested utilizing both in vitro and in vivo experiments. The results showed that the replication ability of the viruses released in DF-1 cell cultures was listed in order as rGX15MM6-2 > rALV-B-Jenv > rGX14FF03. rGX15MM6-2 caused the most serious suppression of body weight gain, exhibited a significant negative effect on the development of immune organs (P < 0.05) and lower antibody responses to vaccinations with the commercial oil-emulsion vaccines (OEVs) (P<0.05) in the challenged chickens. The viral detection showed that the positive rate in blood from the birds infected with rALV-B-Jenv were respectively higher than those from the birds infected with rGX14FF03 (P < 0.05). At 25 wpi, similar tumors were found in the abdominal cavity of the birds in rGX15MM6-2 and rALV-B-Jenv groups. The results demonstrated that the ALV-J env gene significantly increases the pathogenicity of the recombinant ALV-B. With the increasing incidence of co-infections of different subgroups of ALV in the field, the possibility of viral recombination is increasing and demands further study.
Collapse
Affiliation(s)
- Qiuhong Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530004, China
| | - Peikun Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530004, China; Institute of Microbe and Host Health, Linyi University, Linyi, Shandong, 276005, China.
| | - Min Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530004, China
| | - Lulu Lin
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530004, China
| | - Mengya Shi
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530004, China
| | - Haijuan Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530004, China
| | - Qiaomu Deng
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530004, China
| | - Huang Teng
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530004, China
| | - Meilan Mo
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530004, China
| | - Tianchao Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
8
|
Wang P, Niu J, Xue C, Han Z, Abdelazez A, Xinglin Z. Two novel recombinant avian leukosis virus isolates from Luxi gamecock chickens. Arch Virol 2020; 165:2877-2881. [PMID: 32885326 DOI: 10.1007/s00705-020-04799-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/07/2020] [Indexed: 11/24/2022]
Abstract
Avian leukosis virus (ALV) is associated with immune suppression, neoplasia, and reduced performance in chickens. In this study, two strains of ALV were isolated from Luxi gamecocks by DF-1 cell culture and identified by PCR, immunofluorescence assay, and sequencing of the viral genome. These strains were found to be novel recombinant viruses with nucleotide sequence identity of over 93.0% in the LTR and 94.4% in U3 to ALV-J, over 95.0% in the 5'UTR to ALV-C, over 93.4% in gp85 to ALV-B, and over 96.0% in gp37 to ALV-E. These results indicate that these two isolates are recombinants between ALV-J, ALV-C, ALV-E and ALV-B.
Collapse
Affiliation(s)
- Peikun Wang
- Institute of Microbe and Host Health, Linyi University, Linyi, 276005, Shandong, China.
| | - Jianrui Niu
- Institute of Microbe and Host Health, Linyi University, Linyi, 276005, Shandong, China
| | - Cong Xue
- Institute of Microbe and Host Health, Linyi University, Linyi, 276005, Shandong, China
| | - Zhaoqing Han
- Institute of Microbe and Host Health, Linyi University, Linyi, 276005, Shandong, China
| | - Amro Abdelazez
- Institute of Microbe and Host Health, Linyi University, Linyi, 276005, Shandong, China
| | - Zhang Xinglin
- Institute of Microbe and Host Health, Linyi University, Linyi, 276005, Shandong, China.
| |
Collapse
|
9
|
Sun T, Wang X, Han W, Ma X, Yin W, Fang B, Lin X, Li Y. Complete genome sequence of a novel recombinant avian leukosis virus isolated from a three-yellow chicken. Arch Virol 2020; 165:2615-2618. [DOI: 10.1007/s00705-020-04764-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
|