1
|
Zhuang L, Gong J, Shen J, Zhao Y, Yang J, Liu Q, Zhang Y, Shen Q. Advances in molecular epidemiology and detection methods of pseudorabies virus. DISCOVER NANO 2025; 20:45. [PMID: 39992589 PMCID: PMC11850701 DOI: 10.1186/s11671-025-04217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Pseudorabies (PR), a highly contagious disease caused by the pseudorabies virus (PRV), represents a significant threat to the global swine industry. Despite the success of developed countries in controlling the PRV epidemic through swine pseudorabies eradication programs, wild boars, as a potential source of infection, still require sustained attention and effective control measures. Concurrently, there has been considerable global attention directed towards cases of PRV infection in humans. In consideration of the aforementioned factors, this paper presents a comprehensive review of recent developments in the PRV genome, epidemiology, vaccine research, and molecular detection methods. The epidemiology section presents an analysis of the transmission routes, susceptible animal groups, and geographic distribution of PRV, as well as an examination of the trend of the epidemic in recent years. In the field of vaccine research, the current development of genetically engineered vaccines is emphasized, and the immunogenicity and safety of vaccines are discussed. Moreover, the molecular detection techniques utilized to identify PRV, including immunological methods, nucleic acid detection methods, biosensors, and so forth, are presented in a systematic manner. Finally, this paper presents a comprehensive discussion of the current status of PRV-related research and offers insights into future directions, with the aim of providing a foundation for the scientific prevention and control of PRV.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Jingyi Shen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
2
|
Zhou Y, Yu H, Zhao X, Ni J, Gan S, Dong W, Du J, Zhou X, Wang X, Song H. Detection and differentiation of seven porcine respiratory pathogens using a multiplex ligation-dependent probe amplification assay. Vet J 2024; 305:106124. [PMID: 38653339 DOI: 10.1016/j.tvjl.2024.106124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Respiratory diseases due to viral or bacterial agents, either alone or in combination, cause substantial economic burdens to the swine industry worldwide. Rapid and reliable detection of causal pathogens is crucial for effective epidemiological surveillance and disease management. This research aimed to employ the multiplex ligation-dependent probe amplification (MLPA) assay for simultaneous detection of seven distinct pathogens causing respiratory problems in swine, porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), porcine respiratory coronavirus (PRCV), porcine circovirus type 2 (PCV2), Pasteurella multocida, Actinobacillus pleuropneumoniae, and Glässerella parasuis. The results indicated no probe cross-reactivity among the seven target agents with other swine pathogens. The detection limits ranged from 5 to 34 copies per assay for the target organisms. The MLPA assay was evaluated with 88 samples and compared to real-time or multiplex PCR for the target pathogens. The MLPA assay demonstrated high relative test sensitivities (100 %) and reasonable to good relative specificities at 62.5 %, 95.1 %, 86.8 %, and 97.6 % for PRRSV, P. multocida, G. parasuis, and PCV2, respectively, relative to comparator PCR assays. In 71 samples where MLPA and comparator PCR assays matched exactly, infections were detected in 64 samples (90.1 %), with PRRSV being the most commonly found virus and 50.7 % of the samples showing co-infection with two to five of the pathogens. This approach serves as a valuable tool for conducting differential diagnoses and epidemiological investigations of pathogen prevalence within swine populations.
Collapse
Affiliation(s)
- Yingshan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Haoran Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xiuling Zhao
- Ningbo Key Laboratory of Port Biological and Food Safety Testing, Technical Center of Ningbo Customs, Ningbo, Zhejiang Province 315000, China
| | - Jianbo Ni
- Ningbo Key Laboratory of Port Biological and Food Safety Testing, Technical Center of Ningbo Customs, Ningbo, Zhejiang Province 315000, China
| | - Shiqi Gan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Wanyu Dong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Jing Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xingdong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| |
Collapse
|
3
|
Liu H, Shi K, Sun W, Zhao J, Yin Y, Si H, Qu S, Lu W. Development a multiplex RT-PCR assay for simultaneous detection of African swine fever virus, classical swine fever virus and atypical porcine pestivirus. J Virol Methods 2020; 287:114006. [PMID: 33127443 DOI: 10.1016/j.jviromet.2020.114006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
African swine fever virus (ASFV), classical swine fever virus (CSFV) and atypical porcine pestivirus (APPV) have caused considerable financial losses to the pig industry worldwide, and it is critical to achieve early and accurate diagnosis of these viruses to control the diseases induced by them. In this study, three pairs of specific primers were designed based on the highly conserved genome regions of these viruses, and a multiplex reverse transcription-polymerase chain reaction (mRT-PCR) assay for ASFV, CSFV and APPV was established after various reaction conditions were optimized. The mRT-PCR assay consisted of two steps, that is, reverse transcription (RT) and mPCR. The assay was highly specific, sensitive, and reproducible for ASFV, CSFV and APPV without cross-reaction with other swine pathogens. The sensitivity of this assay, which used purified plasmid constructs containing specific viral target fragments as templates, was 6.34 × 102 copies/μL for ASFV and 6.34 × 101 copies/μL for both CSFV and APPV. A total of 384 clinical samples from piglets suspected to be infected in Guangxi Province, Southern China, during 2018-2019 were analyzed by the established mRT-PCR method. The results showed that the positive rates of ASFV, CSFV and APPV were 43.75 %, 13.28 % and 4.17 %, respectively, and the coinfection rates of ASFV/CSFV, ASFV/APPV and CSFV/APPV were 5.47 %, 1.83 % and 1.30 %, respectively. To understand the epidemiological characteristics of APPV, the newly discovered virus, in Guangxi Province, the clinical samples from APPV-positive animals were selected randomly for amplification and sequencing, and the complete genomic sequences of four APPV strains were obtained. Phylogenetic analysis demonstrated that APPV strains from Guangxi Province had a high degree of genetic diversity. This study provides an important tool for rapid detection and accurate diagnosis of ASFV, CSFV and APPV.
Collapse
Affiliation(s)
- Huixin Liu
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China.
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Jing Zhao
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Sujie Qu
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Wenjun Lu
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| |
Collapse
|