1
|
Sun X, Guo J, Shen J, Guan M, Liu L, Xie Y, Xu H, Wang M, Ren A, Li W, Cong F, Li X. Genetics and biological characteristics of duck reoviruses isolated from ducks and geese in China. Vet Res 2025; 56:30. [PMID: 39915856 PMCID: PMC11803967 DOI: 10.1186/s13567-025-01470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
The emergence and circulation of duck reovirus have caused severe threats to domestic waterfowl production because of the lethal infections they cause in ducks and geese. However, the evolution of circulating duck reoviruses and their replication and pathogenicity in domestic birds have not been fully investigated. In this study, we identified and isolated six duck reoviruses from clinical samples of sick or deceased farmed ducks and geese and sequenced their full genomes. Phylogenetic analysis revealed the evolutionary landscape of duck reoviruses and the complex reassortment of these circulating viruses with avian orthoreovirus and Muscovy duck reovirus. Animal infection studies revealed differences in the replication and pathogenicity of the reoviruses identified in this study in ducks, geese and chickens. Lethal infection with highly pathogenic viruses causes severe focal necrosis and hemorrhage in the liver, spleen, bursa of Fabricius and thymus, resulting in high mortality in inoculated birds. Importantly, chickens are susceptible to circulating duck reovirus, highlighting the potential risk of duck reovirus infection in chickens. Our study revealed the evolution, pathogenicity and potential cross-species transmission risk of duck reoviruses, further emphasizing the importance of continued and systemic surveillance at the interface of domestic waterfowl and chickens.
Collapse
Affiliation(s)
- Xiaohong Sun
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Jing Guo
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Jinyan Shen
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Mengdi Guan
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Lili Liu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yujiao Xie
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Hongke Xu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Mengjing Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Anran Ren
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Wenxi Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.
| | - Xuyong Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China.
| |
Collapse
|
2
|
Wang Y, Xu S, Chen X, Dou Y, Yang X, Hu Z, Wu S, Wang X, Hu J, Liu X. Single dose of recombinant baculovirus vaccine expressing sigma B and sigma C genes provides good protection against novel duck reovirus challenge in ducks. Poult Sci 2025; 104:104565. [PMID: 39631275 PMCID: PMC11652866 DOI: 10.1016/j.psj.2024.104565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The novel duck reovirus (NDRV) disease causes high economic losses, resulting in substantial economic losses in waterfowl industry. However, currently, no commercial vaccines are available to alleviate NDRV infection throughout the world. Here, we developed two subunit vaccine candidates for NDRV based on the insect cell-baculovirus expression system (IC-BEVS). Two recombinant viruses, namely rBac-σB and rBac-σC, were successfully generated based on the consensus sequence of NDRV. Then, the σB and σC subunit vaccine candidates were prepared by directly inactivating the recombinant virus infected-Sf9 cell suspension. The double antibody-sandwich ELISA was used for quantitative of σB or σC protein in the inactivated crude antigen. Protective efficacy results revealed that, compared with the whole virus inactivated vaccine, a single dose of 160 ng σB or σC protein showed advantages in inducing serum antibodies, elevating weight, alleviating liver and spleen injury, restraining viral shedding and viral replication in ducklings. To be noted, the subunit σC or the combination of subunit σB and σC vaccine candidates had better protective efficacies, especially the combined σB and σC vaccine group. Therefore, our study provides useful information for developing effective vaccine against NDRV infection.
Collapse
Affiliation(s)
- Yufei Wang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Siyi Xu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Chen
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yunlong Dou
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xingzhu Yang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shuang Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Li Y, Yang H, Lu Y, Yin Z, Xu H, Mei K, Huang S. Isolation and identification of a novel goose-origin reovirus GD218 and its pathogenicity experiments. Front Vet Sci 2024; 11:1423122. [PMID: 39525643 PMCID: PMC11544629 DOI: 10.3389/fvets.2024.1423122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Since 2020, a novel goose-derived reovirus, characterized by goose hemorrhagic hepatitis, has emerged in the goose breeding industry of Guangdong province, China, leading to significant economic losses in the poultry sector. To study the genetic variation of novel goose reovirus (NGRV) in Guangdong province, this experiment utilized goose embryonic fibroblast cells for virus isolation. RT-PCR was conducted to identify, amplify, clone, and sequence the complete genome of the NGRV isolated from Zhaoqing. The genomic sequences were compared with reference strains to construct a phylogenetic tree. Moreover, animal pathogenicity, excretion patterns, and pathological sections were examined. The results showed that liver and spleen samples from geese suspected of NGRV infection were used for isolation, resulting in the identification of a reovirus presumed to originate from geese, designated as GD218. In terms of genomic structure and sequence homology, GD218 closely resembles the novel duck reovirus, differing significantly from earlier isolated NDRV strains (J18, NP03, SD12, etc.) in genetic composition (nt: 80.6-97.9%, aa: 94.3-98.9%). However, it is similar to strains isolated after 2018, such as XT18, SY, QR, YL, LY20, etc. (nt: 95.3-98.9%, aa: 98.6-99.7%). Therefore, based on phylogenetic analysis, GD218 is hypothesized to be a novel type of goose-origin reovirus homologous to the novel duck reovirus.
Collapse
Affiliation(s)
- Yuze Li
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Huihu Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongkun Lu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Zhenghao Yin
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Hang Xu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Kun Mei
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Shujian Huang
- School of Animal Science and Technology, Foshan University, Foshan, China
| |
Collapse
|
4
|
Xu Z, Liu H, Zheng X, Cheng X, Wang S, You G, Zhu X, Zheng M, Dong H, Xiao S, Zeng L, Zeng X, Chen S, Chen S. Simultaneous detection and differentiation of classical Muscovy duck reovirus and goose-origin Muscovy duck reovirus by RT-qPCR assay with high-resolution melting analysis. Front Vet Sci 2024; 11:1459898. [PMID: 39512916 PMCID: PMC11541953 DOI: 10.3389/fvets.2024.1459898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Classical Muscovy duck reovirus (C-MDRV) and goose-origin Muscovy duck reovirus (Go-MDRV) infections cause "Liver white-spots disease" in Muscovy duckling and gosling. It is difficult to differentiate the infections caused by C-MDRV and Go-MDRV using conventional serological methods. Methods Specific primers were designed and synthesized according to σNS and λA nucleotide sequences of C-MDRV and Go-MDRV, respectively. The PCR amplified products were cloned into the pMD-18-T vector. The recombinant plasmid DNA was used to establish an SYBR Green І based duplex real-time PCR assay for the simultaneous detection and differentiation of C-MDRV and Go-MDRV using high-resolution melting (HRM) analysis. The specificity, sensitivity, and repeatability of the methodology were examined based on the optimization of the reaction system and amplification conditions. Results C-MDRV and Go-MDRV were identified by their distinctive melting temperatures with 84.50 ± 0.25°C for C-MDRV and 87.50 ± 0.20°C for Go-MDRV, respectively. The amplifications were specific, and other non-targeted waterfowl viruses employed in this study did not show normalized melting peaks. The intra- and inter-assay coefficients of variations were between 0.05 and 1.83%, demonstrating good repeatability. The detection limits of this assay were 51.4 copies·μl-1 for C-MDRV and 61.8 copies·μl-1 for Go-MDRV, respectively. A total of 45 clinical samples were tested by RT-qPCR, with positive rates of 15.56% for C-MDRV and 22.22% for Go-MDRV, without co-infections. Discussion These results suggest that this duplex RT-qPCR method is highly sensitive, specific, and reproducible. The HRM assay established in this study provides a powerful tool for the differential detection and epidemiological investigation of C-MDRV and Go-MDRV.
Collapse
Affiliation(s)
- Zhuoran Xu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongwei Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Zheng
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxia Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Guangju You
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Xiaoli Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Hui Dong
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Shifeng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Li Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Xiancheng Zeng
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| |
Collapse
|
5
|
Chen Y, Yan Z, Liao C, Song Y, Zhou Q, Shen H, Chen F. Recombinant linear multiple epitopes of σB protein protect Muscovy ducks against novel duck reovirus infection. Front Vet Sci 2024; 11:1360246. [PMID: 38803800 PMCID: PMC11129634 DOI: 10.3389/fvets.2024.1360246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 05/29/2024] Open
Abstract
Infection by the novel duck reovirus (NDRV) in ducklings causes high mortality, which leads to substantial economic losses in the duck industry in China. To date, no commercial vaccine is available for this disease. In this study, linear B cell epitopes of the σB protein of the NDRV were predicted and recombinant multiple linear B cell epitopes (MLBEs) were constructed through linkers. The recombinant MLBEs were then expressed and purified. One-day-old Muscovy ducklings were immunized with different doses of MLBEs and challenged with 5 × 104 ELD50 of the virulent CHY strain of NDRV 14 days after immunization. The ducklings vaccinated with 20 and 40 μg of MLBE performed no clinical signs or gross or histopathological lesions, indicating 100% protection against infection. The viral load in the liver and spleens of these birds was significantly lower than that in the control group. Additionally, these ducklings exhibited positive seroconversion at 7 days after vaccination on enzyme-linked immunosorbent assay. These results indicate that MLBE of σB could be used as a candidate for developing vaccines against NDRV infection.
Collapse
Affiliation(s)
- Yiquan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhuanqiang Yan
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Changtao Liao
- College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Yiwei Song
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Qi Zhou
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Hanqin Shen
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Fu H, Chen S, Zhang J, Su J, Miao Z, Huang Y, Wan C. Rapid detection of goose megrivirus using TaqMan real-time PCR technology. Poult Sci 2024; 103:103611. [PMID: 38471226 PMCID: PMC11067730 DOI: 10.1016/j.psj.2024.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to develop an efficient and accurate platform for the detection of the newly identified goose megrivirus (GoMV). To achieve this goal, we developed a TaqMan real-time PCR technology for the rapid detection and identification of GoMV. Our data showed that the established TaqMan real-time PCR assay had high sensitivity, with the lowest detection limit of 67.3 copies/μL. No positive signal can be observed from other goose origin viruses (including AIV, GPV, GoCV, GHPyV, and GoAstV), with strong specificity. The coefficients of variation of repeated intragroup and intergroup tests were all less than 1.5%, with excellent repeatability. Clinical sample investigation data from domestic Minbei White geese firstly provided evidence that GoMV can be transmitted both horizontally and vertically. In conclusion, since the TaqMan real-time PCR method has high sensitivity, specificity, and reproducibility, it can be a useful candidate tool for GoMV epidemiological investigation.
Collapse
Affiliation(s)
- Huanru Fu
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyu Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinpeng Zhang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jinbo Su
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongwei Miao
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
7
|
Zhang X, Chen G, Liu R, Guo J, Mei K, Qin L, Li Z, Yuan S, Huang S, Wen F. Identification, pathological, and genomic characterization of novel goose reovirus associated with liver necrosis in geese, China. Poult Sci 2024; 103:103269. [PMID: 38064883 PMCID: PMC10749903 DOI: 10.1016/j.psj.2023.103269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023] Open
Abstract
Since 2021, a novel strain of goose reovirus (GRV) has emerged within the goose farming industry in Guangdong province, China. This particular viral variant is distinguished by the presence of white necrotic foci primarily localized in the liver and spleen, leading to substantial economic losses for the poultry industry. However, the etiology, prevalence and genomic characteristics of the causative agent have not been thoroughly investigated. In this study, we conducted an epidemiological inquiry employing suspected GRV samples collected from May 2021 to September 2022. The macroscopic pathological and histopathological lesions associated with GRV-infected clinical specimens were examined. Moreover, we successfully isolated the GRV strain and elucidated the complete genome sequence of the isolate GD21/88. Through phylogenetic and recombination analysis, we unveiled that the GRV strains represent a novel variant resulting from multiple reassortment events. Specifically, the μNS, λC, and σNS genes of GRV were found to have originated from chicken reovirus, while the σA gene of GRV exhibited a higher degree of similarity with a novel duck reovirus. The remaining genes of GRV were traced back to Muscovy duck reovirus. Collectively, our findings underscore the significance of GRV as a pathogenic agent impacting the goose farming industry. The insights gleaned from this study contribute to a more comprehensive understanding of the epidemiology of GRV in Southern China and shed light on the genetic reassortment events exhibited by the virus.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Gaojie Chen
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Runzhi Liu
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Kun Mei
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Limei Qin
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China; Guangdong Huasheng Biotechnology Co., Ltd,Guangzhou 511300, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China.
| |
Collapse
|
8
|
Zhu D, Sun R, Wang M, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. First isolation and genomic characterization of avian reovirus from black swans (Cygnus atratus) in China. Poult Sci 2023; 102:102947. [PMID: 37598551 PMCID: PMC10458333 DOI: 10.1016/j.psj.2023.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Identification and analysis of the avian reovirus from black swan. Isolation of the strain through the chorioallantoic membrane route of duck embryos, identified through transmission electron microscopy and RT-PCR based on the ARV S2 gene. The complete genome of the ARV strain was obtained using next-generation sequencing technology. The isolated strain of ARV was named CD200801 and was identified through transmission electron microscopy and RT-PCR based on the ARV S2 gene. Experimental infection with CD200801 resulted in the death of ducklings with serious spleen and liver focal necrosis. BLAST analysis of CD200801 sequences showed a 35.5 to 98.6% similarity to a novel duck reovirus that was isolated in recent years. Phylogenetic analysis revealed that CD200801 was closely related to ARV isolates YL, GX-Y7, and XT-18. We report the first avian reovirus infection in the black swan. This study provides important new insights into the evolutionary relationships among different ARV strains and highlights the need for continued surveillance and monitoring of these viruses in both domestic and wild bird flocks. These findings have significant implications for the development of effective strategies for disease prevention and control in the poultry industry.
Collapse
Affiliation(s)
- Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Rong Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Kong J, Shao G, Zhang Y, Wang J, Xie Z, Feng K, Zhang X, Xie Q. Molecular characterization, complete genome sequencing, and pathogenicity of Novel Duck Reovirus from South Coastal Area in China. Poult Sci 2023; 102:102776. [PMID: 37302330 PMCID: PMC10276289 DOI: 10.1016/j.psj.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Novel Duck Reovirus (NDRV) that has been found throughout the world in waterfowl, and it has been extensively described. Here, we report the complete genome sequence of a NDRV strain isolated in China called NDRV YF10. This strain was collected from 87 samples with infected ducks in South Coastal Area. The NDRV genome consists of 23,419 bp. With the assistance of computer analysis, the promoter and terminator of each gene segment and 10 viral genes segments were identified, which encode polypeptides ranging from 98 to 1,294 amino acids. All gene fragments of this virus strain were determined and compared to previously reported strains, revealing genetic variation with similarity rates ranging from 96 to 99% for each gene segment. Each gene segment formed 2 host-associated groups, the waterfowl-derived reovirus and the avian-derived reovirus, except for the S1 gene segment, which was closely related to ARV evolution and formed a host-independent subcluster. This difference may be due to Avian Reovirus (ARV) evolving in a host-dependent manner. In order to evaluate the pathogenicity of YF10, a novel isolated strain of NDRV was tested in 2 types of ducks. It was observed that the YF10 isolated strain exhibits varying degrees of virulence, highlighting the potential risk posed to different types of ducks. In conclusion, our findings emphasize the importance of epidemiology studies, molecular characterization, and prevention of NDRV in waterfowl.
Collapse
Affiliation(s)
- Jie Kong
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Guanming Shao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yukun Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jinfeng Wang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Keyu Feng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
10
|
Peng Z, Zhang H, Zhang X, Wang H, Liu Z, Qiao H, Lv Y, Bian C. Identification and molecular characterization of novel duck reoviruses in Henan Province, China. Front Vet Sci 2023; 10:1137967. [PMID: 37065255 PMCID: PMC10098080 DOI: 10.3389/fvets.2023.1137967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Novel Duck reovirus (NDRV) is an ongoing non-enveloped virus with ten double-stranded RNA genome segments that belong to the genus Orthoreovirus, in the family Reoviridae. NDRV-associated spleen swelling, and necrosis disease have caused considerable economic losses to the waterfowl industry worldwide. Since 2017, a significant number of NDRV outbreaks have emerged in China. Herein, we described two cases of duck spleen necrosis disease among ducklings on duck farms in Henan province, central China. Other potential causative agent, including Muscovy duck reovirus (MDRV), Duck hepatitis A virus type 1 (DHAV-1), Duck hepatitis A virus type 3 (DHAV-3), Newcastle disease virus (NDV), and Duck tembusu virus (DTMUV), were excluded by reverse transcription-polymerase chain reaction (RT-PCR), and two NDRV strains, HeNXX-1/2021 and HNJZ-2/2021, were isolated. Sequencing and phylogenetic analysis of the σC genes revealed that both newly identified NDRV isolates were closely related to DRV/SDHZ17/Shandong/2017. The results further showed that Chinese NDRVs had formed two distinct clades, with late 2017 as the turning point, suggesting that Chinese NDRVs have been evolving in different directions. This study identified and genetic characteristics of two NDRV strains in Henan province, China, indicating NDRVs have evolved in different directions in China. This study provides an insight into the ongoing emerged duck spleen necrosis disease and enriches our understanding of the genetic diversity and evolution of NDRVs.
Collapse
Affiliation(s)
- Zhifeng Peng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Han Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haiyan Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zihan Liu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongxing Qiao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yujin Lv
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Chuanzhou Bian
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- *Correspondence: Chuanzhou Bian
| |
Collapse
|
11
|
Recombinant characteristics, pathogenicity, and transmissibility of a variant goose orthoreovirus derived from inter-lineage recombination. Vet Microbiol 2023; 277:109620. [PMID: 36543090 DOI: 10.1016/j.vetmic.2022.109620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Since March 2021, an infectious characterized by white necrotic foci throughout the goose body has appeared in the major goose-producing regions in China. This disease has caused economic hardship for goose farms in many regions of China with approximately 50 % mortality. A novel goose-origin orthoreovirus was isolated from the spleen of diseased geese and designated as N-GRV/HN/Goose/2021/China (N-GRV-HN21) strain. Next-generation sequencing and phylogenetic analysis revealed that the isolate was a reassortant virus containing viral gene segments from three ARV serotypes that infect duck, muscovy duck, and goose. Geese infection test showed that both N-GRV-HN21-infected and contacted geese displayed whole-body white necrotic foci. N-GRV RNA was detected in different organs of both infected and contacted geese, indicating that the N-GRV isolate is pathogenic and transmissible in geese. Seroconversion was also observed in experimentally infected and contacted geese. A prevalence study of 323 goose serum samples collected from different goose breeding areas showed that 86 % of the geese were positive for N-GRV. In conclusion, all results warrant the necessity to monitor orthoreovirus epidemiology and reassortment as the orthoreovirus could be an important pathogen for the waterfowl industry and a novel orthoreovirus might emerge to threaten animal and public health.
Collapse
|
12
|
He D, Wang F, Zhao L, Jiang X, Zhang S, Wei F, Wu B, Wang Y, Diao Y, Tang Y. Epidemiological investigation of infectious diseases in geese on mainland China during 2018-2021. Transbound Emerg Dis 2022; 69:3419-3432. [PMID: 36088652 DOI: 10.1111/tbed.14699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 02/04/2023]
Abstract
Geese play an important role in agricultural economics, with China producing the vast majority of goose meat consumed worldwide annually. The variations in the avian viruses and co-infections result in substantial economic losses to the goose industry in China. To understand the evolutionary characteristics and co-infections of viruses, a broad epidemiological investigation of epizootic viruses of goose was carried out in nine provinces of China during 2018-2021. Here, the results indicated that, among the 1970 clinical samples, 50.81% (1001/1970) were positive for goose astrovirus (GAstV), 18.22% (359/1970) for avian orthoreovirus, 12.74% (251/1970) for goose parvovirus, 11.02% (217/1970) for H9N2 subtype avian influenza virus, 4.01% (79/1970) for Newcastle disease virus, and 2.08% (41/1970) for fowl adenovirus. Among the six viruses, co-infections comprised a large proportion (66.37%) in the field, of which the dual infection was more common. Additionally, phylogenetic analysis of GAstVs indicated that Chinese GAstVs had formed two distinct groups, that is, GAstV-1 and GAstV-2. GAstV-2 sub-genotype II-c had arisen as the dominant genotype in the whole country. Notably, all the H9N2-AIV isolated strains harboured the mammalian adaptation markers I155T, H183N, and Q226L (H3 numbering) in the HA gene, which promotes preferential binding to human-like α2-6-linked sialic acid receptors. And beyond that, we determined that the goose-origin Muscovy Duck Reovirus isolates, showing 51.7%-96% similarities to that of other waterfowl-origin orthoreovirus isolates in sequence homology analysis of the representative part of σC, are a new variant of waterfowl-origin orthoreovirus. These data provide valuable information about the prevalence of infectious diseases in geese on mainland China.
Collapse
Affiliation(s)
- Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Fangfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Liming Zhao
- Zibo Animal Disease Prevention and Control Center, Zibo, China
| | - Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Shuai Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Bingrong Wu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yan Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| |
Collapse
|
13
|
Varga-Kugler R, Marton S, Thuma Á, Szentpáli-Gavallér K, Bálint Á, Bányai K. Candidate 'Avian orthoreovirus B': an emerging waterfowl pathogen in Europe and Asia? Transbound Emerg Dis 2022; 69:e3386-e3392. [PMID: 35810357 DOI: 10.1111/tbed.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
A fusogenic virus was isolated from a flock of breeder Pekin ducks in 2019, Hungary. The affected flock experienced a marked decrease in egg production. Histopathologic lesions were seen in the oviduct and in the lungs of birds sent for diagnostic investigation. The fusogenic agent was characterized as an orthoreovirus by viral metagenomics. The assembled viral genome was composed of 10 genomic segments and was 23,433 nucleotides (nt) in length. The study strain, designated Reo/HUN/DuckDV/2019, shared low-to-medium gene-wise sequence identity with avian orthoreovirus strains from galliform and anseriform birds (nt, 38.90% to 72.33%) as well as with representative strains of neoavian orthoreoviruses (nt, 40.07% to 68.23%). On the contrary, the study strain shared 86.48% to 95.01% pairwise nt sequence identities with recent German and Chinese reovirus isolates, D2533/6 and Ych, respectively. Phylogenetic analysis clustered all three unusual waterfowl pathogens on a monophyletic branch, indicating a common evolutionary origin of Reo/HUN/DuckDV/2019 with these enigmatic orthoreoviruses described over the past few years. The finding that a candidate new orthoreovirus species, tentatively called Avian orthoreovirus B, was isolated in recent years in Europe and Asia in moribund ducks seems an alarming sign that needs to be better evaluated by extending laboratory diagnosis of viral pathogens in countries where the waterfowl industry is important. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Renáta Varga-Kugler
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143, Budapest, Hungary
| | - Szilvia Marton
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143, Budapest, Hungary
| | - Ákos Thuma
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, H-1143, Budapest, Hungary
| | - Katalin Szentpáli-Gavallér
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, H-1143, Budapest, Hungary.,Current address: CEVA-Phylaxia, Szállás u. 5., H-1107, Budapest, Hungary
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, H-1143, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143, Budapest, Hungary.,Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078, Budapest, Hungary
| |
Collapse
|
14
|
Zhang J, Huang Y, Li L, Dong J, Kuang R, Liao M, Sun M. First Identification and Genetic Characterization of a Novel Duck Astrovirus in Ducklings in China. Front Vet Sci 2022; 9:873062. [PMID: 35464380 PMCID: PMC9024104 DOI: 10.3389/fvets.2022.873062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Four divergent groups of duck astroviruses (DAstVs) have been identified that infect domestic ducks. In March 2021, a fatal disease characterized by visceral urate deposition broke out in 5-day-old Beijing ducks on a commercial farm in Guangdong province, China. We identified a novel duck astrovirus from the ducklings suffering from gout disease. The complete genome sequence of this DAstV was obtained by virome sequencing and amplification. Phylogenetic analyses and pairwise comparisons demonstrated that this DAstV represented a novel group of avastrovirus. Thus, we designated this duck astrovirus as DAstV-5 JM strain. DAstV-5 JM shared genome sequence identities of 15–45% with other avastroviruses. Amino acid identities with proteins from other avastroviruses did not exceed 59% for ORF1a, 79% for ORF1b, and 60% for ORF2. The capsid region of JM shared genetic distances of 0.596 to 0.695 with the three official avastrovirus species. suggesting that JM could be classified as a novel genotype species in the Avastrovirus genus. Meanwhile, JM shares genetic distances of 0.402–0.662 with all the other known unassigned avastroviruses, revealing that it represents an additional unassigned avastrovirus. In summary, we determined that the DAstV-5 JM strain is a novel genotype species of avastrovirus.
Collapse
Affiliation(s)
- Junqin Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
| | - Yunzhen Huang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
| | - Linlin Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
| | - Jiawen Dong
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
| | - Ruihuan Kuang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China
- *Correspondence: Minhua Sun
| |
Collapse
|