1
|
Xu H, Zhu N, Chen Y, Yue H, Zhuo M, Wangkahart E, Liang Q, Wang R. Pathogenicity of Streptococcus iniae causing mass mortalities of yellow catfish ( Tachysurus fulvidraco) and its induced host immune response. Front Microbiol 2024; 15:1374688. [PMID: 38585696 PMCID: PMC10995319 DOI: 10.3389/fmicb.2024.1374688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
The outbreak of mass mortality occurred in Tachysurus fulvidraco farm in Hubei province of China. The pathogenic strain of Streptococcus iniae (termed 2022SI08) was isolated and identified from diseased T. fulvidraco, based on morphological, physiological, and biochemical characteristics, as well as 16S rRNA gene sequence and phylogenetic analysis. Further, the whole genome of isolate S. iniae was sequenced and predicted to contain one single circular chromosome of 1,776,777 bp with a GC content of 37.14%. The genomic sequence analysis showed that 2022SI08 was positive for 204 virulent and 127 antibiotic resistant genes. The experimental challenge demonstrated the high pathogenicity of the retrieved isolate of S. iniae, with a median lethal dosage (LD50) 9.53 × 105 CFU/g. Histopathological examination indicated that the 2022SI08 strain could induce extensive tissue cell degeneration, necrosis, hemorrhage, and inflammation in the skin, gill, fin, spleen, liver, kidney, intestine, eye, and brain. Moreover, the innate immune enzyme activities in serum such as acid phosphatase and alkaline phosphatase were increased significantly at 24 and 48 h post infection (hpi) and then decreased at 168 hpi. The transcriptional profile of immune associated gene in T. fulvidraco following bacterial infection was detected at each point of time, and the results revealed clear transcriptional activation of those genes, which proving their reacting and regulatory role during the response of the host against S. iniae infection. The results revealed that S. iniae was an etiological agent in the mass mortalities of T. fulvidraco and this research will be conducive for increasing our understanding on pathogenesis and host defensive system in S. iniae invasion.
Collapse
Affiliation(s)
- Hongsen Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Nengbin Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yiling Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Huamei Yue
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, CAFS, Wuhan, China
| | - Meiqin Zhuo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Mahasarakham, Thailand
| | - Qianrong Liang
- Zhejiang Fisheries Technical Extension Center, and Zhejiang Fisheries Test and Aquatic Disease Prevention Center, Hangzhou, China
| | - Rui Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
2
|
Li S, Wang X, Lu Y, Wang J, Yu D, Zhou Z, Wei J, Liu L, Liu J, Liu F, Su Y, Xu H. Co-infections of Klebsiella pneumoniae and Elizabethkingia miricola in black-spotted frogs (Pelophylax nigromaculatus). Microb Pathog 2023; 180:106150. [PMID: 37196678 DOI: 10.1016/j.micpath.2023.106150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Pelophylax nigromaculatus is a common commercial species of frogs that generally cultured throughout China. With the application of high-density culture, P. nigromaculatus can be co-infected by two or more pathogens, which thereby induce synergistic influence on the virulence of the infection. In this study, two bacterial strains were simultaneously isolated from diseased frogs by incubating on Luria-Bertani (LB) agar. Isolates were identified as Klebsiella pneumoniae and Elizabethkingia miricola by morphological, physiological and biochemical features, as well as 16S rRNA sequencing and phylogenetic analysis. The whole genome of K. pneumoniae and E. miricola isolates consist single circular chromosome of 5,419,557 bp and 4,215,349 bp, respectively. The genomic sequence analysis further indicated that K. pneumoniae isolates conserved 172 virulent and 349 antibiotic-resistance genes, whereas E. miricola contained 24 virulent and 168 antibiotic resistance genes. In LB broth, both isolates could grow well at 0%-1% NaCl concentration and pH 5-7. Antibiotic susceptibility testing revealed that both K. pneumoniae and E. miricola were resistant to kanamycin, neomycin, ampicillin, piperacillin, carbenicillin, enrofloxacin, norfloxacin and sulfisoxazole. Histopathological studies showed that co-infection caused considerable lesions in the tissues of brain, eye, muscle, spleen, kidney and liver, including cell degeneration, necrosis, hemorrhage and inflammatory cell infiltration. The LD50 of K. pneumoniae and E. miricola isolates were 6.31 × 105 CFU/g and 3.98 × 105 CFU/g frog weight, respectively. Moreover, experimentally infected frogs exhibited quick and higher mortality under coinfection with K. pneumoniae and E. miricola than those single challenge of each bacterium. To date, no natural co-infection by these two bacteria has been reported from frogs and even amphibians. The results will not only shed light on the feature and pathogenesis of K. pneumoniae and E. miricola, but also highlight that co-infection of these two pathogen is a potential threat to black-spotted frog farming.
Collapse
Affiliation(s)
- Shurui Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiaoni Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yulan Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jiahuan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Denghang Yu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhigang Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jin Wei
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Lihe Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jun Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB242TZ, UK
| | - Yingbing Su
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Hongsen Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|