1
|
Saito N, Chen S, Kitajima K, Zhou Z, Koide Y, Encabo JR, Diaz MGQ, Choi IR, Koyanagi KO, Kishima Y. Phylogenetic analysis of endogenous viral elements in the rice genome reveals local chromosomal evolution in Oryza AA-genome species. FRONTIERS IN PLANT SCIENCE 2023; 14:1261705. [PMID: 37965031 PMCID: PMC10641527 DOI: 10.3389/fpls.2023.1261705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/29/2023] [Indexed: 11/16/2023]
Abstract
Introduction Rice genomes contain endogenous viral elements homologous to rice tungro bacilliform virus (RTBV) from the pararetrovirus family Caulimoviridae. These viral elements, known as endogenous RTBV-like sequences (eRTBVLs), comprise five subfamilies, eRTBVL-A, -B, -C, -D, and -X. Four subfamilies (A, B, C, and X) are present to a limited degree in the genomes of the Asian cultivated rice Oryza sativa (spp. japonica and indica) and the closely related wild species Oryza rufipogon. Methods The eRTBVL-D sequences are widely distributed within these and other Oryza AA-genome species. Fifteen eRTBVL-D segments identified in the japonica (Nipponbare) genome occur mostly at orthologous chromosomal positions in other AA-genome species. The eRTBVL-D sequences were inserted into the genomes just before speciation of the AA-genome species. Results and discussion Ten eRTBVL-D segments are located at six loci, which were used for our evolutionary analyses during the speciation of the AA-genome species. The degree of genetic differentiation varied among the eRTBVL-D segments. Of the six loci, three showed phylogenetic trees consistent with the standard speciation pattern (SSP) of the AA-genome species (Type A), and the other three represented phylogenies different from the SSP (Type B). The atypical phylogenetic trees for the Type B loci revealed chromosome region-specific evolution among the AA-genome species that is associated with phylogenetic incongruences: complex genome rearrangements between eRTBVL-D segments, an introgression between the distant species, and low genetic diversity of a shared eRTBVL-D segment. Using eRTBVL-D as an indicator, this study revealed the phylogenetic incongruence of local chromosomal regions with different topologies that developed during speciation.
Collapse
Affiliation(s)
- Nozomi Saito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing, China
| | - Katsuya Kitajima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Zhitong Zhou
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jaymee R. Encabo
- Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines, Los Baños, Laguna, Philippines
| | - Maria Genaleen Q. Diaz
- Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines, Los Baños, Laguna, Philippines
| | - Il-Ryong Choi
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Kanako O. Koyanagi
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Vassilieff H, Geering ADW, Choisne N, Teycheney PY, Maumus F. Endogenous Caulimovirids: Fossils, Zombies, and Living in Plant Genomes. Biomolecules 2023; 13:1069. [PMID: 37509105 PMCID: PMC10377300 DOI: 10.3390/biom13071069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The Caulimoviridae is a family of double-stranded DNA viruses that infect plants. The genomes of most vascular plants contain endogenous caulimovirids (ECVs), a class of repetitive DNA elements that is abundant in some plant genomes, resulting from the integration of viral DNA in the chromosomes of germline cells during episodes of infection that have sometimes occurred millions of years ago. In this review, we reflect on 25 years of research on ECVs that has shown that members of the Caulimoviridae have occupied an unprecedented range of ecological niches over time and shed light on their diversity and macroevolution. We highlight gaps in knowledge and prospects of future research fueled by increased access to plant genome sequence data and new tools for genome annotation for addressing the extent, impact, and role of ECVs on plant biology and the origin and evolutionary trajectories of the Caulimoviridae.
Collapse
Affiliation(s)
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre de La Réunion, France
- UMR PVBMT, Université de la Réunion, F-97410 Saint-Pierre de La Réunion, France
| | - Florian Maumus
- INRAE, URGI, Université Paris-Saclay, 78026 Versailles, France
| |
Collapse
|
3
|
Vassilieff H, Haddad S, Jamilloux V, Choisne N, Sharma V, Giraud D, Wan M, Serfraz S, Geering ADW, Teycheney PY, Maumus F. CAULIFINDER: a pipeline for the automated detection and annotation of caulimovirid endogenous viral elements in plant genomes. Mob DNA 2022; 13:31. [PMID: 36463202 PMCID: PMC9719215 DOI: 10.1186/s13100-022-00288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Plant, animal and protist genomes often contain endogenous viral elements (EVEs), which correspond to partial and sometimes entire viral genomes that have been captured in the genome of their host organism through a variety of integration mechanisms. While the number of sequenced eukaryotic genomes is rapidly increasing, the annotation and characterization of EVEs remains largely overlooked. EVEs that derive from members of the family Caulimoviridae are widespread across tracheophyte plants, and sometimes they occur in very high copy numbers. However, existing programs for annotating repetitive DNA elements in plant genomes are poor at identifying and then classifying these EVEs. Other than accurately annotating plant genomes, there is intrinsic value in a tool that could identify caulimovirid EVEs as they testify to recent or ancient host-virus interactions and provide valuable insights into virus evolution. In response to this research need, we have developed CAULIFINDER, an automated and sensitive annotation software package. CAULIFINDER consists of two complementary workflows, one to reconstruct, annotate and group caulimovirid EVEs in a given plant genome and the second to classify these genetic elements into officially recognized or tentative genera in the Caulimoviridae. We have benchmarked the CAULIFINDER package using the Vitis vinifera reference genome, which contains a rich assortment of caulimovirid EVEs that have previously been characterized using manual methods. The CAULIFINDER package is distributed in the form of a Docker image.
Collapse
Affiliation(s)
- Héléna Vassilieff
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Sana Haddad
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France ,grid.460789.40000 0004 4910 6535Present Address: Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Véronique Jamilloux
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France ,grid.507621.7Present Address: Université Paris-Saclay, INRAE, PROSE, 92160 Antony, France
| | - Nathalie Choisne
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Vikas Sharma
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France ,grid.8385.60000 0001 2297 375XPresent Address: Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Delphine Giraud
- UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France
| | - Mariène Wan
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Saad Serfraz
- grid.413016.10000 0004 0607 1563CABB, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Andrew D. W. Geering
- grid.1003.20000 0000 9320 7537Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072 Australia
| | | | - Florian Maumus
- grid.507621.7Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| |
Collapse
|
4
|
Schmidt N, Seibt KM, Weber B, Schwarzacher T, Schmidt T, Heitkam T. Broken, silent, and in hiding: tamed endogenous pararetroviruses escape elimination from the genome of sugar beet (Beta vulgaris). ANNALS OF BOTANY 2021; 128:281-299. [PMID: 33729490 PMCID: PMC8389469 DOI: 10.1093/aob/mcab042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Endogenous pararetroviruses (EPRVs) are widespread components of plant genomes that originated from episomal DNA viruses of the Caulimoviridae family. Due to fragmentation and rearrangements, most EPRVs have lost their ability to replicate through reverse transcription and to initiate viral infection. Similar to the closely related retrotransposons, extant EPRVs were retained and often amplified in plant genomes for several million years. Here, we characterize the complete genomic EPRV fraction of the crop sugar beet (Beta vulgaris, Amaranthaceae) to understand how they shaped the beet genome and to suggest explanations for their absent virulence. METHODS Using next- and third-generation sequencing data and genome assembly, we reconstructed full-length in silico representatives for the three host-specific EPRVs (beetEPRVs) in the B. vulgaris genome. Focusing on the endogenous caulimovirid beetEPRV3, we investigated its chromosomal localization, abundance and distribution by fluorescent in situ and Southern hybridization. KEY RESULTS Full-length beetEPRVs range between 7.5 and 10.7 kb in size, are heterogeneous in structure and sequence, and occupy about 0.3 % of the beet genome. Although all three beetEPRVs were assigned to the florendoviruses, they showed variably arranged protein-coding domains, different fragmentation, and preferences for diverse sequence contexts. We observed small RNAs that specifically target the individual beetEPRVs, indicating stringent epigenetic suppression. BeetEPRV3 sequences occur along all sugar beet chromosomes, preferentially in the vicinity of each other and are associated with heterochromatic, centromeric and intercalary satellite DNAs. BeetEPRV3 members also exist in genomes of related wild species, indicating an initial beetEPRV3 integration 13.4-7.2 million years ago. CONCLUSIONS Our study in beet illustrates the variability of EPRV structure and sequence in a single host genome. Evidence of sequence fragmentation and epigenetic silencing implies possible plant strategies to cope with long-term persistence of EPRVs, including amplification, fixation in the heterochromatin, and containment of EPRV virulence.
Collapse
Affiliation(s)
- Nicola Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kathrin M Seibt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Beatrice Weber
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, PR China
| | - Thomas Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Richert-Pöggeler KR, Vijverberg K, Alisawi O, Chofong GN, Heslop-Harrison JS(P, Schwarzacher T. Participation of Multifunctional RNA in Replication, Recombination and Regulation of Endogenous Plant Pararetroviruses (EPRVs). FRONTIERS IN PLANT SCIENCE 2021; 12:689307. [PMID: 34234799 PMCID: PMC8256270 DOI: 10.3389/fpls.2021.689307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/19/2021] [Indexed: 05/11/2023]
Abstract
Pararetroviruses, taxon Caulimoviridae, are typical of retroelements with reverse transcriptase and share a common origin with retroviruses and LTR retrotransposons, presumably dating back 1.6 billion years and illustrating the transition from an RNA to a DNA world. After transcription of the viral genome in the host nucleus, viral DNA synthesis occurs in the cytoplasm on the generated terminally redundant RNA including inter- and intra-molecule recombination steps rather than relying on nuclear DNA replication. RNA recombination events between an ancestral genomic retroelement with exogenous RNA viruses were seminal in pararetrovirus evolution resulting in horizontal transmission and episomal replication. Instead of active integration, pararetroviruses use the host DNA repair machinery to prevail in genomes of angiosperms, gymnosperms and ferns. Pararetrovirus integration - leading to Endogenous ParaRetroViruses, EPRVs - by illegitimate recombination can happen if their sequences instead of homologous host genomic sequences on the sister chromatid (during mitosis) or homologous chromosome (during meiosis) are used as template. Multiple layers of RNA interference exist regulating episomal and chromosomal forms of the pararetrovirus. Pararetroviruses have evolved suppressors against this plant defense in the arms race during co-evolution which can result in deregulation of plant genes. Small RNAs serve as signaling molecules for Transcriptional and Post-Transcriptional Gene Silencing (TGS, PTGS) pathways. Different populations of small RNAs comprising 21-24 nt and 18-30 nt in length have been reported for Citrus, Fritillaria, Musa, Petunia, Solanum and Beta. Recombination and RNA interference are driving forces for evolution and regulation of EPRVs.
Collapse
Affiliation(s)
- Katja R. Richert-Pöggeler
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- *Correspondence: Katja R. Richert-Pöggeler,
| | - Kitty Vijverberg
- Naturalis Biodiversity Center, Evolutionary Ecology Group, Leiden, Netherlands
- Radboud University, Institute for Water and Wetland Research (IWWR), Nijmegen, Netherlands
| | - Osamah Alisawi
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf, Iraq
| | - Gilbert N. Chofong
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - J. S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
6
|
Trochez-Solarte JD, Ruiz-Erazo X, Almanza-Pinzon M, Zambrano-Gonzalez G. Role of microsatellites in genetic analysis of Bombyx mori silkworm: a review. F1000Res 2019; 8:1424. [PMID: 32148760 PMCID: PMC7043130 DOI: 10.12688/f1000research.20052.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 11/23/2022] Open
Abstract
In the genome of
Bombyx mori Linnaeus (1758), the microsatellites, or simple sequence repeats (SSR), feature among their particular characteristics a high adenine and thymine (A/T) content, low number of repeats, low frequency, and a grouping in "families" with similar flanking regions. Such characteristics may be the result of a complex interaction between factors that limit the size and dispersion of SSR loci—such as their high association with transposons—and mean that microsatellites within this taxon suitable as molecular markers are relatively rare. The determination of genetic profiles in populations and cell lines has not been affected owing to the high level of polymorphism, nor has the analysis of diversity, structure and genetic relationships. However, the scarcity of suitable microsatellites has restricted their application in genetic mapping, limiting them to preliminary identification of gene location of genes or quantitative trait loci (QTLs) related to thermotolerance, resistance to viruses, pigmentation patterns, body development and the weight of the cocoon, the cortex, the pupa and the filament. The review confirms that, as markers, microsatellites are versatile and perform well. They could thus be useful both to advance research in emerging countries with few resources seeking to promote sericulture in their territories, and to advance in the genetic and molecular knowledge of characteristics of productive and biological interest, given the latest technological developments in terms of the sequencing, identification, isolation and genotyping of SSR loci.
Collapse
Affiliation(s)
- Julian David Trochez-Solarte
- Agropecuary Sciences Department, Production Integrated Systems Research Group (SISINPRO), Faculty of Agricultural Sciences, University of Cauca, Popayán, Cauca, 190017, Colombia
| | - Ximena Ruiz-Erazo
- Agropecuary Sciences Department, Production Integrated Systems Research Group (SISINPRO), Faculty of Agricultural Sciences, University of Cauca, Popayán, Cauca, 190017, Colombia
| | - Martha Almanza-Pinzon
- Agropecuary Sciences Department, Production Integrated Systems Research Group (SISINPRO), Faculty of Agricultural Sciences, University of Cauca, Popayán, Cauca, 190017, Colombia
| | - Giselle Zambrano-Gonzalez
- Biology Department, Geology, Ecology and Conservation Research Group (GECO), Faculty of Natural Sciences and Education, University of Cauca, Popayán, Cauca, 190002, Colombia
| |
Collapse
|
7
|
Chen S, Saito N, Encabo JR, Yamada K, Choi IR, Kishima Y. Ancient Endogenous Pararetroviruses in Oryza Genomes Provide Insights into the Heterogeneity of Viral Gene Macroevolution. Genome Biol Evol 2018; 10:2686-2696. [PMID: 30239708 PMCID: PMC6179347 DOI: 10.1093/gbe/evy207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2018] [Indexed: 12/13/2022] Open
Abstract
Endogenous viral sequences in eukaryotic genomes, such as those derived from plant pararetroviruses (PRVs), can serve as genomic fossils to study viral macroevolution. Many aspects of viral evolutionary rates are heterogeneous, including substitution rate differences between genes. However, the evolutionary dynamics of this viral gene rate heterogeneity (GRH) have been rarely examined. Characterizing such GRH may help to elucidate viral adaptive evolution. In this study, based on robust phylogenetic analysis, we determined an ancient endogenous PRV group in Oryza genomes in the range of being 2.41-15.00 Myr old. We subsequently used this ancient endogenous PRV group and three younger groups to estimate the GRH of PRVs. Long-term substitution rates for the most conserved gene and a divergent gene were 2.69 × 10-8 to 8.07 × 10-8 and 4.72 × 10-8 to 1.42 × 10-7 substitutions/site/year, respectively. On the basis of a direct comparison, a long-term GRH of 1.83-fold was identified between these two genes, which is unexpectedly low and lower than the short-term GRH (>3.40-fold) of PRVs calculated using published data. The lower long-term GRH of PRVs was due to the slightly faster rate decay of divergent genes than of conserved genes during evolution. To the best of our knowledge, we quantified for the first time the long-term GRH of viral genes using paleovirological analyses, and proposed that the GRH of PRVs might be heterogeneous on time scales (time-dependent GRH). Our findings provide special insights into viral gene macroevolution and should encourage a more detailed examination of the viral GRH.
Collapse
Affiliation(s)
- Sunlu Chen
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Nozomi Saito
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jaymee R Encabo
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
- Microbiology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - Kanae Yamada
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Il-Ryong Choi
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Yuji Kishima
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Yu H, Wang X, Lu Z, Xu Y, Deng X, Xu Q. Endogenous pararetrovirus sequences are widely present in Citrinae genomes. Virus Res 2018; 262:48-53. [PMID: 29792903 DOI: 10.1016/j.virusres.2018.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/20/2018] [Accepted: 05/20/2018] [Indexed: 01/04/2023]
Abstract
Endogenous pararetroviruses (EPRVs) are characterized in several plant genomes and their biological effects have been reported. In this study, hundreds of EPRV segments were identified in six Citrinae genomes. A total of 1034 EPRV segments were identified in the genomes of sweet orange, 2036 in pummelo, 598 in clementine mandarin, 752 in Ichang papeda, 2060 in citron and 245 in atalantia. Genomic analysis indicated that EPRV segments tend to cluster as hot spots in the genomes, particularly on chromosome 2 and 5. Large numbers of simple repeats and transposable elements were identified in the 2-kb flanking regions of the EPRV segments. Comparative genomic analysis and PCR experiments showed that there are highly conserved EPRV segments and species-specific EPRV segments between the Citrinae genomes. Phylogenetic analysis suggested that the integration events of EPRVs could initiate in a common progenitor of Citrinae species and repeatedly occur during the Citrinae divergence.
Collapse
Affiliation(s)
- Huiwen Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihao Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Chen S, Zheng H, Kishima Y. Genomic fossils reveal adaptation of non-autonomous pararetroviruses driven by concerted evolution of noncoding regulatory sequences. PLoS Pathog 2017; 13:e1006413. [PMID: 28662199 PMCID: PMC5491270 DOI: 10.1371/journal.ppat.1006413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/16/2017] [Indexed: 11/19/2022] Open
Abstract
The interplay of different virus species in a host cell after infection can affect the adaptation of each virus. Endogenous viral elements, such as endogenous pararetroviruses (PRVs), have arisen from vertical inheritance of viral sequences integrated into host germline genomes. As viral genomic fossils, these sequences can thus serve as valuable paleogenomic data to study the long-term evolutionary dynamics of virus-virus interactions, but they have rarely been applied for this purpose. All extant PRVs have been considered autonomous species in their parasitic life cycle in host cells. Here, we provide evidence for multiple non-autonomous PRV species with structural defects in viral activity that have frequently infected ancient grass hosts and adapted through interplay between viruses. Our paleogenomic analyses using endogenous PRVs in grass genomes revealed that these non-autonomous PRV species have participated in interplay with autonomous PRVs in a possible commensal partnership, or, alternatively, with one another in a possible mutualistic partnership. These partnerships, which have been established by the sharing of noncoding regulatory sequences (NRSs) in intergenic regions between two partner viruses, have been further maintained and altered by the sequence homogenization of NRSs between partners. Strikingly, we found that frequent region-specific recombination, rather than mutation selection, is the main causative mechanism of NRS homogenization. Our results, obtained from ancient DNA records of viruses, suggest that adaptation of PRVs has occurred by concerted evolution of NRSs between different virus species in the same host. Our findings further imply that evaluation of within-host NRS interactions within and between populations of viral pathogens may be important.
Collapse
Affiliation(s)
- Sunlu Chen
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Huizhen Zheng
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yuji Kishima
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
10
|
Barrero RA, Napier KR, Cunnington J, Liefting L, Keenan S, Frampton RA, Szabo T, Bulman S, Hunter A, Ward L, Whattam M, Bellgard MI. An internet-based bioinformatics toolkit for plant biosecurity diagnosis and surveillance of viruses and viroids. BMC Bioinformatics 2017; 18:26. [PMID: 28077064 PMCID: PMC5225587 DOI: 10.1186/s12859-016-1428-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/15/2016] [Indexed: 01/06/2023] Open
Abstract
Background Detection and preventing entry of exotic viruses and viroids at the border is critical for protecting plant industries trade worldwide. Existing post entry quarantine screening protocols rely on time-consuming biological indicators and/or molecular assays that require knowledge of infecting viral pathogens. Plants have developed the ability to recognise and respond to viral infections through Dicer-like enzymes that cleave viral sequences into specific small RNA products. Many studies reported the use of a broad range of small RNAs encompassing the product sizes of several Dicer enzymes involved in distinct biological pathways. Here we optimise the assembly of viral sequences by using specific small RNA subsets. Results We sequenced the small RNA fractions of 21 plants held at quarantine glasshouse facilities in Australia and New Zealand. Benchmarking of several de novo assembler tools yielded SPAdes using a kmer of 19 to produce the best assembly outcomes. We also found that de novo assembly using 21–25 nt small RNAs can result in chimeric assemblies of viral sequences and plant host sequences. Such non-specific assemblies can be resolved by using 21–22 nt or 24 nt small RNAs subsets. Among the 21 selected samples, we identified contigs with sequence similarity to 18 viruses and 3 viroids in 13 samples. Most of the viruses were assembled using only 21–22 nt long virus-derived siRNAs (viRNAs), except for one Citrus endogenous pararetrovirus that was more efficiently assembled using 24 nt long viRNAs. All three viroids found in this study were fully assembled using either 21–22 nt or 24 nt viRNAs. Optimised analysis workflows were customised within the Yabi web-based analytical environment. We present a fully automated viral surveillance and diagnosis web-based bioinformatics toolkit that provides a flexible, user-friendly, robust and scalable interface for the discovery and diagnosis of viral pathogens. Conclusions We have implemented an automated viral surveillance and diagnosis (VSD) bioinformatics toolkit that produces improved viruses and viroid sequence assemblies. The VSD toolkit provides several optimised and reusable workflows applicable to distinct viral pathogens. We envisage that this resource will facilitate the surveillance and diagnosis viral pathogens in plants, insects and invertebrates. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1428-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roberto A Barrero
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Kathryn R Napier
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA, 6150, Australia.,Plant Biosecurity Cooperative Research Centre, Canberra, ACT, 2617, Australia
| | - James Cunnington
- Department of Agriculture and Water Resources, Mickleham, VIC, 3064, Australia
| | - Lia Liefting
- Ministry for Primary Industries, Wellington, New Zealand
| | - Sandi Keenan
- The New Zealand Institute for Plant Food and Research Limited, Better Border Biosecurity, Lincoln, 7608, New Zealand
| | - Rebekah A Frampton
- The New Zealand Institute for Plant Food and Research Limited, Better Border Biosecurity, Lincoln, 7608, New Zealand
| | - Tamas Szabo
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA, 6150, Australia
| | - Simon Bulman
- The New Zealand Institute for Plant Food and Research Limited, Better Border Biosecurity, Lincoln, 7608, New Zealand
| | - Adam Hunter
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA, 6150, Australia
| | - Lisa Ward
- Ministry for Primary Industries, Wellington, New Zealand
| | - Mark Whattam
- Department of Agriculture and Water Resources, Mickleham, VIC, 3064, Australia
| | - Matthew I Bellgard
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
11
|
Chen S, Kishima Y. Endogenous pararetroviruses in rice genomes as a fossil record useful for the emerging field of palaeovirology. MOLECULAR PLANT PATHOLOGY 2016; 17:1317-1320. [PMID: 27870389 PMCID: PMC6638417 DOI: 10.1111/mpp.12490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/03/2016] [Accepted: 08/03/2016] [Indexed: 05/26/2023]
Affiliation(s)
- Sunlu Chen
- Laboratory of Plant Breeding, Research Faculty of AgricultureHokkaido UniversitySapporo060‐8589Japan
| | - Yuji Kishima
- Laboratory of Plant Breeding, Research Faculty of AgricultureHokkaido UniversitySapporo060‐8589Japan
| |
Collapse
|
12
|
Sun Q, Huang S, Wang X, Zhu Y, Chen Z, Chen D. N6-methyladenine functions as a potential epigenetic mark in eukaryotes. Bioessays 2015; 37:1155-62. [PMID: 26293475 DOI: 10.1002/bies.201500076] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
N(6)-methyladenine (6mA) is one of the most abundant types of DNA methylation, and plays an important role in bacteria; however, its roles in higher eukaryotes, such as plants, insects, and mammals, have been considered less important. Recent studies highlight that 6mA does indeed occur, and that it plays an important role in eukaryotes, such as worm, fly, and green algae, and thus the regulation of 6mA has emerged as a novel epigenetic mechanism in higher eukaryotes. Despite this intriguing development, a number of important issues regarding its biological roles are yet to be addressed. In this review, we focus on the 5mC and 6mA modifications in terms of their production, distribution, and the erasure of 6mA in higher eukaryotes including mammals. We perform an analysis of the potential functions of 6mA, hence widening understanding of this new epigenetic mark in higher eukaryotes, and suggesting future studies in this field.
Collapse
Affiliation(s)
- Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shoujun Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaona Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuanxiang Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhenping Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dahua Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Maliogka VI, Olmos A, Pappi PG, Lotos L, Efthimiou K, Grammatikaki G, Candresse T, Katis NI, Avgelis AD. A novel grapevine badnavirus is associated with the Roditis leaf discoloration disease. Virus Res 2015; 203:47-55. [PMID: 25791736 DOI: 10.1016/j.virusres.2015.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/04/2015] [Accepted: 03/08/2015] [Indexed: 01/15/2023]
Abstract
Roditis leaf discoloration (RLD), a graft-transmissible disease of grapevine, was first reported in Greece in the 1980s. Even though various native grapevine viruses were identified in the affected vines, the etiology of the disease remained unknown. In the present study, we used an NGS platform for sequencing siRNAs from a twenty-year old Roditis vine showing typical RLD symptoms. Analysis of the NGS data revealed the presence of various known grapevine viruses and viroids as well as a hitherto uncharacterized DNA virus. The circular genome of the new virus was fully reassembled. It is 6988 nts long and includes 4 open reading frames (ORFs). ORF1, ORF2 and ORF4 code for proteins with unknown functions while ORF3 encodes a polyprotein with motifs related to the replication, encapsidation and movement of the virus. Phylogenetic analysis classified the novel virus within the genus Badnavirus, with closest relationship to Fig badnavirus 1. Further studies showed that the new badnavirus is closely related with the RLD disease and the provisional name grapevine Roditis leaf discoloration-associated virus (GRLDaV) is proposed. Our findings extend the number of DNA viruses identified in grapevine, further drawing attention to the potential importance of this virus group on grapevine pathology.
Collapse
Affiliation(s)
- Varvara I Maliogka
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece.
| | - Antonio Olmos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Plant Protection and Biotechnology Center, 46113 Moncada, Valencia, Spain
| | - Polyxeni G Pappi
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Leonidas Lotos
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Konstantinos Efthimiou
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Garyfalia Grammatikaki
- Faculty of Agriculture & Food Technology, Technological Education Institute of Crete, 71 004 Heraklion, Crete, Greece
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, CS20032, F-33882 Villenave d'Ornon cedex, France; UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Nikolaos I Katis
- Lab of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Apostolos D Avgelis
- Institute of Viticulture of Heraklion, Hellenic Agricultural Organization-Demeter, 71 307 Heraklion, Crete, Greece
| |
Collapse
|
14
|
Ladics GS, Bartholomaeus A, Bregitzer P, Doerrer NG, Gray A, Holzhauser T, Jordan M, Keese P, Kok E, Macdonald P, Parrott W, Privalle L, Raybould A, Rhee SY, Rice E, Romeis J, Vaughn J, Wal JM, Glenn K. Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res 2015; 24:587-603. [PMID: 25716164 PMCID: PMC4504983 DOI: 10.1007/s11248-015-9867-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/14/2015] [Indexed: 11/26/2022]
Abstract
In January 2014, an international meeting sponsored by the International Life Sciences Institute/Health and Environmental Sciences Institute and the Canadian Food Inspection Agency titled “Genetic Basis of Unintended Effects in Modified Plants” was held in Ottawa, Canada, bringing together over 75 scientists from academia, government, and the agro-biotech industry. The objectives of the meeting were to explore current knowledge and identify areas requiring further study on unintended effects in plants and to discuss how this information can inform and improve genetically modified (GM) crop risk assessments. The meeting featured presentations on the molecular basis of plant genome variability in general, unintended changes at the molecular and phenotypic levels, and the development and use of hypothesis-driven evaluations of unintended effects in assessing conventional and GM crops. The development and role of emerging “omics” technologies in the assessment of unintended effects was also discussed. Several themes recurred in a number of talks; for example, a common observation was that no system for genetic modification, including conventional methods of plant breeding, is without unintended effects. Another common observation was that “unintended” does not necessarily mean “harmful”. This paper summarizes key points from the information presented at the meeting to provide readers with current viewpoints on these topics.
Collapse
Affiliation(s)
- Gregory S. Ladics
- DuPont Pioneer Agricultural Biotechnology, DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE 19803 USA
| | - Andrew Bartholomaeus
- Therapeutics Research Centre, School of Medicine, Queensland University, Brisbane, QLD 4072 Australia
- Faculty of Health, School of Pharmacy, University of Canberra, Locked Bag 1, Canberra, ACT 2601 Australia
| | - Phil Bregitzer
- National Small Grains Germplasm Research Facility, US Department of Agriculture – Agricultural Research Service, 1691 S. 2700 W., Aberdeen, ID 83210 USA
| | - Nancy G. Doerrer
- ILSI Health and Environmental Sciences Institute, 1156 15th St., NW, Suite 200, Washington, DC 20005 USA
| | - Alan Gray
- Centre for Ecology and Hydrology, CEH Wallingford, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB UK
| | - Thomas Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Mark Jordan
- Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5 Canada
| | - Paul Keese
- Office of the Gene Technology Regulator, Australian Government, MDP54, GPO Box 9848, Canberra, ACT 2601 Australia
| | - Esther Kok
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Phil Macdonald
- Canadian Food Inspection Agency, 1400 Merivale Rd, Ottawa, ON K1A 0Y9 Canada
| | - Wayne Parrott
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602 USA
| | - Laura Privalle
- Bayer CropScience, 407 Davis Drive, Morrisville, NC 27560 USA
| | - Alan Raybould
- Syngenta Ltd, Jealott’s Hill International Research Centre, Bracknell, RG42 6EY UK
- Present Address: Syngenta Crop Protection AG, Schwarzwaldallee 215, 4058 Basel, Switzerland
| | - Seung Yon Rhee
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama St., Stanford, CA 94305 USA
| | - Elena Rice
- Monsanto Company, 700 Chesterfield Pkwy W., CC5A, Chesterfield, MO 63017 USA
| | - Jörg Romeis
- Agroscope, Institute for Sustainability Sciences ISS, Reckenholzstr. 191, 8046 Zurich, Switzerland
| | - Justin Vaughn
- University of Georgia, 111 Riverbend Road, Athens, GA 30602 USA
| | - Jean-Michel Wal
- Dept. SVS, AgroParisTech, 16 rue Claude Bernard, 75231 Paris, France
| | - Kevin Glenn
- Monsanto Company, 800 N. Lindbergh Blvd, U4NA, St. Louis, MO 63167 USA
| |
Collapse
|
15
|
Rice genomes recorded ancient pararetrovirus activities: Virus genealogy and multiple origins of endogenization during rice speciation. Virology 2014; 471-473:141-52. [PMID: 25461539 DOI: 10.1016/j.virol.2014.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/11/2014] [Indexed: 11/21/2022]
Abstract
Viral fossils in rice genomes are a best entity to understand ancient pararetrovirus activities through host plant history because of our advanced knowledge of the genomes and evolutionary history with rice and its related species. Here, we explored organization, geographic origins and genealogy of rice pararetroviruses, which were turned into endogenous rice tungro bacilliform virus-like (eRTBVL) sequences. About 300 eRTBVL sequences from three representative rice genomes were clearly classified into six families. Most of the endogenization events of the eRTBVLs were initiated before differentiation of the rice progenitor (> 160,000 years ago). We successfully followed the genealogy of old relic viruses during rice speciation, and inferred the geographical origins for these viruses. Possible virus genomic sequences were explained mostly by recombinations between different virus families. Interestingly, we discovered that only a few recombination events among the numerous occasions had determined the virus genealogy.
Collapse
|
16
|
Schnell J, Steele M, Bean J, Neuspiel M, Girard C, Dormann N, Pearson C, Savoie A, Bourbonnière L, Macdonald P. A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments. Transgenic Res 2014; 24:1-17. [PMID: 25344849 PMCID: PMC4274372 DOI: 10.1007/s11248-014-9843-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/16/2014] [Indexed: 01/20/2023]
Abstract
During genetic engineering, DNA is inserted into a plant’s genome, and such insertions are often accompanied by the insertion of additional DNA, deletions and/or rearrangements. These genetic changes are collectively known as insertional effects, and they have the potential to give rise to unintended traits in plants. In addition, there are many other genetic changes that occur in plants both spontaneously and as a result of conventional breeding practices. Genetic changes similar to insertional effects occur in plants, namely as a result of the movement of transposable elements, the repair of double-strand breaks by non-homologous end-joining, and the intracellular transfer of organelle DNA. Based on this similarity, insertional effects should present a similar level of risk as these other genetic changes in plants, and it is within the context of these genetic changes that insertional effects must be considered. Increased familiarity with genetic engineering techniques and advances in molecular analysis techniques have provided us with a greater understanding of the nature and impact of genetic changes in plants, and this can be used to refine pre-market assessments of genetically engineered plants and food and feeds derived from genetically engineered plants.
Collapse
Affiliation(s)
- Jaimie Schnell
- Plant and Biotechnology Risk Assessment Unit, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, ON, K1A 0Y9, Canada,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Iskra-Caruana ML, Chabannes M, Duroy PO, Muller E. A possible scenario for the evolution of Banana streak virus in banana. Virus Res 2014; 186:155-62. [PMID: 24457073 DOI: 10.1016/j.virusres.2014.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 12/18/2013] [Accepted: 01/10/2014] [Indexed: 01/15/2023]
Abstract
Outbreaks of Banana streak virus (BSV) have been recorded worldwide where Musa spp. is grown during the last 20 years with no convincing evidence of epidemics. Epidemics were previously reported in Uganda where BSV is currently endemic. BSV is a plant pararetrovirus of the family Caulimoviridae, genus Badnavirus it causes chlorosis leaf streak disease. The information currently available on banana streak disease makes it possible to identify a complex of distinct BSV species each causing the same disease. BSV exists in two states: one as an episomal form, infecting plant cells; the other as viral DNA integrated within the B genome of banana (endogenous BSV-eBSV) forming a viral genome for de novo viral particles. Both forms can be infectious in banana plants. The BSV phylogeny is polyphyletic with BSV distributed in two clades. Clade 1 clusters BSV species that occur worldwide and may have an eBSV counterpart, whereas Clade 3 only comprises BSV species from Uganda. Clearly, two distinct origins explain such BSV diversity. However, the epidemiology/outbreaks of BSV remains unclear and the role of eBSV needs to be clarified. In this review, the biodiversity of BSV is explained and discussed in the light of field and molecular epidemiology data. A scheme is proposed for the co-evolution of BSV and banana based on old or recent infection hypotheses related to African domestication sites and banana dissemination to explain the disease context.
Collapse
|
18
|
Borah BK, Sharma S, Kant R, Johnson AMA, Saigopal DVR, Dasgupta I. Bacilliform DNA-containing plant viruses in the tropics: commonalities within a genetically diverse group. MOLECULAR PLANT PATHOLOGY 2013; 14:759-71. [PMID: 23763585 PMCID: PMC6638767 DOI: 10.1111/mpp.12046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
UNLABELLED Plant viruses, possessing a bacilliform shape and containing double-stranded DNA, are emerging as important pathogens in a number of agricultural and horticultural crops in the tropics. They have been reported from a large number of countries in African and Asian continents, as well as from islands from the Pacific region. The viruses, belonging to two genera, Badnavirus and Tungrovirus, within the family Caulimoviridae, have genomes displaying a common plan, yet are highly variable, sometimes even between isolates of the same virus. In this article, we summarize the current knowledge with a view to revealing the common features embedded within the genetic diversity of this group of viruses. TAXONOMY Virus; order Unassigned; family Caulimoviridae; genera Badnavirus and Tungrovirus; species Banana streak viruses, Bougainvillea spectabilis chlorotic vein banding virus, Cacao swollen shoot virus, Citrus yellow mosaic badnavirus, Dioscorea bacilliform viruses, Rice tungro bacilliform virus, Sugarcane bacilliform viruses and Taro bacilliform virus. MICROBIOLOGICAL PROPERTIES Bacilliform in shape; length, 60-900 nm; width, 35-50 nm; circular double-stranded DNA of approximately 7.5 kbp with one or more single-stranded discontinuities. HOST RANGE Each virus generally limited to its own host, including banana, bougainvillea, black pepper, cacao, citrus species, Dioscorea alata, rice, sugarcane and taro. DISEASE SYMPTOMS Foliar streaking in banana and sugarcane, swelling of shoots in cacao, yellow mosaic in leaves and stems in citrus, brown spot in the tubers in yam and yellow-orange discoloration and stunting in rice. USEFUL WEBSITES http://www.dpvweb.net.
Collapse
Affiliation(s)
- Basanta K Borah
- Department of Plant Molecular Biology, Delhi University South Campus, New Delhi 110021, India
| | | | | | | | | | | |
Collapse
|