1
|
Luo S, Liao Z, Huang S, Xia X, Zhang Z, Nong B, Luo T, Zhu C, Chen C, Guo H, Feng R, Pan Y, Liang S, Li Y, Liu J, Qiu Y, Li D, Yang X. Genome-wide association study and BSR-seq identify nitrate reductase-related genes in rice landraces (Oryza sativa L.). THE PLANT GENOME 2025; 18:e70035. [PMID: 40281663 PMCID: PMC12032047 DOI: 10.1002/tpg2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 04/29/2025]
Abstract
Nitrogen (N) is an essential nutrient for rice (Oryza sativa L.) growth and development. However, the lower nitrogen use efficiency (NUE) results in an N fertilizer surplus, which causes many environmental problems. In this study, genome-wide association studies were used to detect nitrate reductase (NR)-related loci in 419 rice landraces. Using the general linear model (GLM), mixed linear model (MLM), linear model (LM), and linear mixed model (LMM), we found six, nine, seven, and six significant single-nucleotide polymorphisms (SNPs) associated (p < 1 × 10-5) for three traits. Moreover, 98 significant SNPs were associated (logarithm of odds ≥ 3) with three traits through 3 V multi-locus random-SNP-effect mixed linear model. Interestingly, we found that Chr1_15896481 was significantly associated in the GLM, MLM, LM, and LMM models. Meanwhile, this significant locus overlapped with a candidate region in bulked segregant RNA sequencing. Through integrated analysis, we identified a most likely candidate genomic region 15,627,420-16,084,761 bp on chromosome 1. By performing functional annotation, RNA sequencing, and real-time quantitative polymerase chain reaction (RT-qPCR) analysis for the genes within this interval, we identified five candidate genes that may affect NR activity. Os01g0378400 exhibits a gene expression pattern highly similar to that of OsNR1.2. It belongs to the NAC transcription factor family, which is involved in plant N metabolism. Os01g0377700 is homologous to an ammonium transporter gene (Cre06g293051). Os01g0383700 encodes a WD40 domain protein, Os01g0379400 encodes an F-box protein, and Os01g0382800 encodes a DYW-type PPR domain protein. These findings will provide valuable genetic resources for NUE genetic improvement in rice breeding.
Collapse
Affiliation(s)
- Shuangshuang Luo
- College of AgricultureGuangxi UniversityNanningChina
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zuyu Liao
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Shilv Huang
- Microbiology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesNanningChina
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Chenli Zhu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Can Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Hui Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Rui Feng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesNanningChina
| | - Shuhui Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yongcheng Li
- College of AgricultureGuangxi UniversityNanningChina
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jianhui Liu
- College of AgricultureGuangxi UniversityNanningChina
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yongfu Qiu
- College of AgricultureGuangxi UniversityNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesNanningChina
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesNanningChina
| | - Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesNanningChina
| |
Collapse
|
2
|
He W, Sun L, Hou T, Yang Z, Yang F, Zhang S, Wang T, Wang X, Li N, Guo Y, Sibley LD, Feng Y, Xiao L. SKSR1 identified as key virulence factor in Cryptosporidium by genetic crossing. Nat Commun 2025; 16:4694. [PMID: 40394032 PMCID: PMC12092579 DOI: 10.1038/s41467-025-60088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/14/2025] [Indexed: 05/22/2025] Open
Abstract
Cryptosporidium is a major cause of severe diarrhea. Although Cryptosporidium isolates exhibit significant differences in infectivity and virulence, the genetic determinants for these traits are not clear. In this study, we use classical genetics to cross two Cryptosporidium parvum isolates of different virulence and use bulk segregant analysis of whole-genome sequences from the progeny to identify quantitative trait loci (QTL) associated with Cryptosporidium infectivity and virulence. Of the 23 genes in three QTL, two have loss-of-function mutations in the low-virulence isolates, including the SKSR1 gene encoding a variant secretory protein. Deletion of the SKSR1 gene or expression of the frame-shifted sequence reduces the pathogenicity of the virulent isolate. SKSR1 is expressed in small granules and secreted into the parasite-host interface during invasion. These results demonstrate that SKSR1 is an important virulence factor in Cryptosporidium, and suggest that the extended SKSR protein family, encoded by clusters of subtelomeric genes, may contribute to pathogenesis.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Lianbei Sun
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianyi Hou
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zuwei Yang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fuxian Yang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shengchen Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianpeng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xinran Wang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Bao J, Shi J, Qin Y, Hua S, Wu Y, Yang C, Gu Y, Dong W. The knockout of ClaCSLH1 induced dwarfing in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:120. [PMID: 40387943 DOI: 10.1007/s00122-025-04909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
In agriculture, selecting ideal plant types with desirable traits, such as dwarfing and upright stem structures, significantly enhances crop yield and quality by optimizing light absorption, spatial efficiency, and nutrient utilization. Developing new varieties of dwarf watermelon is a crucial objective in watermelon breeding. In this study, we constructed an F2 population using the wild-type V063 as the paternal parent and the dwarf variety dw-n as the maternal parent. The dwarfing trait was found to be governed by a pair of recessive alleles. Through bulk segregant analysis sequencing (BSA-seq) and RNA sequencing (RNA-seq), we identified the gene Cla97C02G035450, which encodes cellulose synthase-like H1 (CSLH1), as a candidate gene associated with the dwarfing phenotype. ClaCLSH1 belongs to the ClaCESA/CSLs family, which is involved in the cell wall formation by regulating the synthesis of cellulose and hemicellulose. Microscopic analyses revealed that dw-n exhibited shorter internode cells, thicker cell walls, and elevated hemicellulose content compared to V063. Subcellular localization studies demonstrated that the CLACSLH1 protein is primarily localized in the nucleus and the cell membrane/wall. Notably, the overexpression of CLACSLH1 in the dw-n background rescued its dwarf phenotype. Furthermore, experiments indicated that knockdown of CLACSLH1 resulted in excessive hemicellulose synthesis, inhibited internode cell elongation, and ultimately led to the stunted phenotype observed in dw-n. This research provides innovative insights into the development of superior dwarf watermelon varieties and advances our understanding of the molecular mechanisms underlying watermelon dwarfism.
Collapse
Affiliation(s)
- Jiancheng Bao
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Jiale Shi
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Yuanyuan Qin
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Shengqi Hua
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Yanhong Wu
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Congji Yang
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Yige Gu
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Wei Dong
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
4
|
Tang Y, Zhou X, Li X, Zhou C, Wang W, Zhou M, Hu Z, Li X, Zhang K, Wang S, Zhang Z, Chen H, Wang J, Qiao L. Genetic analysis and fine mapping reveal that AhRt3, which encodes an anthocyanin reductase, is responsible for red testa in cultivated peanuts. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:117. [PMID: 40358622 DOI: 10.1007/s00122-025-04903-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025]
Abstract
KEY MESSAGE AhRt3, which governs the red testa of peanut, was narrowed down to a 125.30 kb region, and one gene encoding anthocyanin reductase was identified as the putative candidate gene. Testa color is a special characteristic of peanuts (Arachis hypogaea L.), and those with dark testa have been focused on recent years owing to their high-anthocyanin content and increased antioxidant nutritional value. However, the genetic mechanisms underlying this trait remain limited. To identify the gene responsible for the red testa color in peanuts, an F2 population was constructed by crossing YH91 (pink testa) with JHT1 (red testa). Genetic analysis revealed that the red testa was controlled by a single dominant gene named AhRt3 (Arachis hypogaea Red Testa 3). Through bulked segregant analysis sequencing, AhRt3 was preliminarily mapped to the chromosome Arahy.03 and subsequently narrowed to a 125.30 kb genomic region containing 12 potential candidate genes. RNA-seq analysis revealed that 4,880 genes were differentially expressed in the seed testa, with only the candidate gene Arahy.W8TDEC exhibiting higher expression levels in JHT1 than in YH91. Additionally, sequence variation, functional annotation, and expression profiling confirmed that Arahy.W8TDEC, which encodes an anthocyanin reductase, may be a candidate gene for AhRt3. The structural variation involving an inversion between the sixth exon and the 3'UTR of Arahy.W8TDEC resulted in altered amino acids closely associated with the red testa phenotype in peanuts. In conclusion, this study highlights the role of a novel gene in regulating red testa and contributes valuable insights into the genetic basis of seed testa in peanuts.
Collapse
Affiliation(s)
- Yanyan Tang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xiantao Zhou
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xin Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Cai Zhou
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Wenlin Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Mo Zhou
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Zhicheng Hu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xiaobei Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Kaiyuan Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Siming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Zhihao Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Hao Chen
- Institute of Crop Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jingshan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Lixian Qiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
5
|
Lu X, Wu J, Shi Q, Sun S, Cheng Y, Zhou G, Li R, Wang H, van der Knaap E, Cui X. A feedback loop at the THERMOSENSITIVE PARTHENOCARPY 4 locus controls tomato fruit set under heat stress. Nat Commun 2025; 16:4184. [PMID: 40328814 PMCID: PMC12056112 DOI: 10.1038/s41467-025-59522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
High temperatures compromise crop productivity worldwide, but breeding bottlenecks slow the delivery of climate-resilient crops. By investigating tomato fruit set under high temperatures, we discover a module comprising two linked genes, THERMOSENSITIVE PARTHENOCARPY 4a (TSP4a) and TSP4b, which encode the transcriptional regulators IAA9 and AINTEGUMENTA (ANT), respectively, to control thermosensitive parthenocarpy. TSP4a and TSP4b form a positive feedback loop upon heat stress to repress auxin signaling in ovaries. Natural TSP4a and TSP4b alleles bear regulatory-region polymorphisms and are differentially expressed to overcome the trade-off between fruit set and wider plant development. Gene editing of the TSP4a promoter and TSP4b 3' UTR in open-chromatin regions results in expression down-regulation, increased parthenocarpy without yield penalties and maintenance of fruit-sugar levels without broad auxin-related pleiotropic defects in greenhouse-grown plants. These mechanistic insights into heat-induced parthenocarpy and auxin signaling in reproductive organs demonstrate breeding utility to safeguard tomato yield under warming scenarios.
Collapse
Affiliation(s)
- Xiaonan Lu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianxin Wu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - QianQian Shi
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Esther van der Knaap
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics University of Georgia, Athens, GA, 30602, USA
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Shi J, Yu H, Liu R, Zhang Y, Fu Y, Wang T, Ni X, Zheng T, Zhao J. Identification and Characterization of a Male Sterile Rapeseed ( Brassica napus) Line for Hybrid Seed Production. PLANTS (BASEL, SWITZERLAND) 2025; 14:1397. [PMID: 40364426 PMCID: PMC12073816 DOI: 10.3390/plants14091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
A male sterile mutant, S201, was identified in Brassica napus. Genetic analysis revealed that the male sterility trait was controlled by a recessive nuclear gene, male sterility (MS), which was stably inherited. The results of microscopy showed that the main reason for male sterility was a defect in microspore development, resulting in the absence of typical exine and mature microspores. Bulked segregant analysis (BSA) and genotyping of an F2 population showed that the MS gene was located in a 1.4 Mb region. Sequence analysis showed that the CYP704B1 gene in this region contained two non-synonymous SNPs, leading to substitutions of two amino acids. A high-throughput KASP marker was characterized to detect the presence of the ms gene in the breeding population. The data presented here indicate that the male sterile mutant S201 can be applied in rapeseed breeding by producing the male sterile line and that the KASP marker developed for male sterility will be useful in marker-assisted selection of male sterile individuals in rapeseed-breeding programs.
Collapse
Affiliation(s)
- Jianghua Shi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (J.S.); (H.Y.); (Y.Z.); (Y.F.); (T.W.); (J.Z.)
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (J.S.); (H.Y.); (Y.Z.); (Y.F.); (T.W.); (J.Z.)
| | - Renhu Liu
- Institute of Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China;
| | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (J.S.); (H.Y.); (Y.Z.); (Y.F.); (T.W.); (J.Z.)
| | - Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (J.S.); (H.Y.); (Y.Z.); (Y.F.); (T.W.); (J.Z.)
| | - Tanliu Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (J.S.); (H.Y.); (Y.Z.); (Y.F.); (T.W.); (J.Z.)
| | - Xiyuan Ni
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (J.S.); (H.Y.); (Y.Z.); (Y.F.); (T.W.); (J.Z.)
| | - Tao Zheng
- Institute of Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China;
| | - Jianyi Zhao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China; (J.S.); (H.Y.); (Y.Z.); (Y.F.); (T.W.); (J.Z.)
| |
Collapse
|
7
|
Li J, Yu N, Sun N, Geng L, Qie Y, Zhai D, Wang Y, Li L, Liu X, Sun X, Wang J, Liu R, Pan G, Zou S, Han G, Jin Y, Ma P. Identification and characterization of the powdery mildew resistance in cultivated emmer wheat accession Lxd-682 via bulked segregant RNA sequencing. BMC PLANT BIOLOGY 2025; 25:583. [PMID: 40319256 PMCID: PMC12048989 DOI: 10.1186/s12870-025-06623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Common wheat (Triticum aestivum L.) is a vital source of nutrition for human consumption. However, wheat production is significantly threatened by various diseases, such as powdery mildew, a widespread fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). Utilizing and identifying resistance genes and elucidating the molecular mechanisms underlying this resistance are the most effective and sustainable ways to fight this disease. RESULTS Lxd-682, a cultivated emmer wheat accession, exhibited resistance to 12 out of 13 tested Bgt isolates at the seedling stage. Genetic analysis revealed that this resistance is conferred by a single dominant gene, tentatively designated as PmLxd-682. Molecular mapping positioned PmLxd-682 between the markers WGRE77413 and WGRC1096, with the Pm4-diagnostic marker JS717/JS718 co-segregating. Homology-based cloning and sequence alignment further confirmed that PmLxd-682 is identical to Pm4a. qRT-PCR analysis showed that the alternative splicing PmLxd-682-V2 exhibited higher expression level than that of PmLxd-682-V1 post-Bgt invasion, suggesting its prominent role in fighting Bgt invasion. Additionally, four pathogenesis-related (PR) genes were significantly up-regulated in both Lxd-682 and susceptible parent Langdon upon infection, revealing possibly unimportant roles in resistance pathway. Furthermore, 1,567 differentially expressed genes (DEGs) between resistant and susceptible bulks were identified through BSR-Seq, with 490 ones located within the candidate interval on chromosome 2AL, and potential biological processes associated with resistance were enriched via gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. To verify the potential regulatory genes, three key genes, TRITD2 Av1G294940, TRITD2 Av1G036490 and TRITD2 Av1G295220 all encoding disease resistance protein, were selected from six candidates via qRT-PCR following post-Bgt invasion. Molecular markers JS717/JS718 and WGRC1096 were confirmed to be available for marker-assisted selection (MAS) of PmLxd-682 in breeding practices. CONCLUSIONS The study identified key genetic intervals and genes involved in the resistance of a cultivated emmer wheat accession Lxd-682 to powdery mildew. These findings significantly advance our understanding of plant-pathogen interactions and establish a solid foundation for future genetic and functional studies aimed at improving disease resistance in crops.
Collapse
Affiliation(s)
- Jiatong Li
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Nina Sun
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Lige Geng
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Dongfeng Zhai
- Shandong Denghai Seeds Co., Ltd, Laizhou, 261448, China
| | - Yuxiang Wang
- Shandong Denghai Seeds Co., Ltd, Laizhou, 261448, China
| | - Linzhi Li
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xueqing Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xusheng Sun
- Yantai Agricultural Technology Extension Center, Yantai, 264001, China
| | - Jiangchun Wang
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Ruishan Liu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Guantong Pan
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Shengmao Zou
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
8
|
Zhang T, Bosland PW, Ma Y, Wang Y, Li W, Kong W, Wei M, Duan P, Zhang G, Wei B. Mapping of resistance genes to powdery mildew based on DNA re-sequencing and bulk segregant analysis in Capsicum. PROTOPLASMA 2025; 262:489-500. [PMID: 39617838 DOI: 10.1007/s00709-024-02013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/24/2024] [Indexed: 04/24/2025]
Abstract
Powdery mildew caused by Leveillula taurica adversely affects the development and growth of pepper plants. However, there have been few reports on the fine mapping and quantitative trait locus (QTLs) gene cloning of resistance genes to powdery mildew in pepper. Herein, an F2 segregating population was constructed using the high resistance material "NuMex Suave Red" and the extremely susceptible material "c89" for bulked segregant analysis and DNA re-sequencing (BSA-seq). Molecular markers were used to achieve fine mapping, followed by expression verification. A major QTL located on chromosome 5 (Chr5, 7.20-11.75 Mb) that is associated with resistance to powdery mildew in pepper was mapped using BSA-seq. A narrow interval of 64.86 kb encompassing five genes was refined using InDel and KSAP molecular markers developed from the QTL region. Among them, the expression of the ubiquitin-conjugating enzyme E2 gene, Capana05g000392, was significantly upregulated in multiple resistant materials. In addition, there was a single nucleotide polymorphism (SNP) of A/G in the 241st position of the CDS sequence of Capana05g000392, which in turn leads to an amino acid polymorphism of M/V between susceptible parent and resistant parent. Overall, these results indicate that the Capana05g000392 gene may serve as a robust potential factor against powdery mildew in pepper. These findings further elucidate the genetic mechanism of resistance to powdery mildew in pepper and facilitate molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Tao Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Paul W Bosland
- Plant and Environmental Sciences Department, New Mexico State University, P.O. Box 30003, Las Cruces, NM, 88001, USA
| | - Yan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Yuhang Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Wei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Weifu Kong
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Min Wei
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Panpan Duan
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
9
|
Hua L, Song R, Hao X, Zhang J, Liu Y, Luo J, Ren X, Li H, Wang G, Rehman SU, Wu J, Fu D, Dong Y, Wang X, Zhang C, Chen S. Manipulation of the brown glume and internode 1 gene leads to alterations in the colouration of lignified tissues, lignin content and pathogen resistance in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1548-1564. [PMID: 39905983 PMCID: PMC12018827 DOI: 10.1111/pbi.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Lignin is a crucial component of the cell wall, providing mechanical support and protection against biotic and abiotic stresses. However, little is known about wheat lignin-related mutants and their roles in pathogen defence. Here, we identified an ethyl methanesulfonate (EMS)-derived Aegilops tauschii mutant named brown glume and internode 1 (bgi1), which exhibits reddish-brown pigmentation in various tissues, including internodes, spikes and glumes. Using map-based cloning and single nucleotide polymorphism (SNP) analysis, we identified AET6Gv20438400 (BGI1) as the leading candidate gene, encoding the TaCAD1 protein. The mutation occurred in the splice acceptor site of the first intron, resulting in a premature stop codon in BGI1. We validated the function of BGI1 using loss-of-function EMS and gene editing knockout mutants, both of which displayed reddish-brown pigmentation in lignified tissues. BGI1 knockout mutants exhibited reduced lignin content and shearing force relative to wild type, while BGI1 overexpression transgenic plants showed increased lignin content and enhanced disease resistance against common root rot and Fusarium crown rot. We confirmed that BGI1 exhibits CAD activity both in vitro and in vivo, playing an important role in lignin biosynthesis. BGI1 was highly expressed in the stem and spike, with its localisation observed in the cytoplasm. Transcriptome analysis revealed the regulatory networks associated with BGI1. Finally, we demonstrated that BGI1 interacts with TaPYL-1D, potentially involved in the abscisic acid signalling pathway. The identification and functional characterisation of BGI1 significantly advance our understanding of CAD proteins in lignin biosynthesis and plant defence against pathogen infection in wheat.
Collapse
Affiliation(s)
- Lei Hua
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Rui Song
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Xiaohua Hao
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Jing Zhang
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Yanna Liu
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Jing Luo
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Xiaopeng Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
| | - Hongna Li
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Guiping Wang
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Shams ur Rehman
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Jiajie Wu
- National Key Laboratory of Wheat Improvement, College of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Daolin Fu
- National Key Laboratory of Wheat Improvement, College of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Yuxiu Dong
- National Key Laboratory of Wheat Improvement, College of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
| | - Chaozhong Zhang
- National Key Laboratory of Wheat Improvement, College of AgronomyShandong Agricultural UniversityTaianShandongChina
- Department of Plant SciencesUniversity of California, DavisDavisCaliforniaUSA
| | - Shisheng Chen
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| |
Collapse
|
10
|
Brunharo CA, Short AW, Bobadilla LK, Streisfeld MA. The Genome of Lolium multiflorum Reveals the Genetic Architecture of Paraquat Resistance. Mol Ecol 2025; 34:e17775. [PMID: 40285737 PMCID: PMC12051776 DOI: 10.1111/mec.17775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Herbicide resistance in agricultural weeds has become one of the greatest challenges for sustainable crop production. The repeated evolution of herbicide resistance provides an excellent opportunity to study the genetic and physiological basis of the resistance phenotype and the evolutionary responses to human-mediated selection pressures. Lolium multiflorum is a ubiquitous weed that has evolved herbicide resistance repeatedly around the world in various cropping systems. We assembled and annotated a chromosome-scale genome for L. multiflorum and elucidated the genetic architecture of paraquat resistance by performing quantitative trait locus analysis, genome-wide association studies, genetic divergence analysis and transcriptome analyses from paraquat-resistant and -susceptible L. multiflorum plants. We identified two regions on chromosome 5 that were associated with paraquat resistance. These regions both showed evidence for positive selection among the resistant populations we sampled, but the effects of this selection on the genome differed, implying a complex evolutionary history. In addition, these regions contained candidate genes that encoded cellular transport functions, including a novel multidrug and toxin extrusion (MATE) protein and a cation transporter previously shown to interact with polyamines. Given that L. multiflorum is a weed and a cultivated crop species, the genomic resources generated will prove valuable to a wide spectrum of the plant science community. Our work contributes to a growing body of knowledge on the underlying evolutionary and ecological dynamics of rapid adaptation to strong anthropogenic selection pressure that could help initiate efforts to improve weed management practices in the long term for a more sustainable agriculture.
Collapse
Affiliation(s)
- Caio A. Brunharo
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Aidan W. Short
- Institute of Ecology and Evolution, University of OregonEugeneOregonUSA
| | | | | |
Collapse
|
11
|
Tian R, Yang Z, Yang R, Wang S, Shen Q, Wang G, Wang H, Zhou Q, Tang J, Fu Z. Regulation of maize kernel development via divergent activation of α-Zein genes by transcription factors O11, O2, and PBF1. J Genet Genomics 2025:S1673-8527(25)00117-1. [PMID: 40254161 DOI: 10.1016/j.jgg.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
α-Zeins, the major maize endosperm storage proteins, are transcriptionally regulated by Opaque 2 (O2) and PROLAMIN-BOX BINDING FACTOR1 (PBF1), with Opaque 11 (O11) functioning upstream of them. However, whether O11 directly binds to α-zein genes and its regulatory interactions with O2 and PBF1 remain unclear. Using the small-kernel mutant sw1, which exhibits decreased 19-kDa and increased 22-kDa α-zein, we positionally cloned O11 and found it directly binds to G-box/E-box motifs. O11 activates 19-kDa α-zein transcription, stronger than PBF1 but weaker than O2. Notably, PBF1 competitively binds to overlapping E-box/P-box motif, and represses O11-mediated transactivation. Although O11 does not physically interact with O2, it participates in the O2-centered hierarchical network to enhance α-zein expression. sw1 o2 and sw1 pbf1 double mutants exhibit smaller, more opaque kernels with further reduced 19-kDa and 22-kDa α-zeins compared to the single mutants, suggesting distinct regulatory effects of these transcription factors on 19-kDa and 22-kDa α-zein genes. Promoter motif analysis suggests that O11, PBF1, and O2 directly regulate 19-kDa α-zein genes, while O11 indirectly controls 22-kDa α-zein genes via O2 and PBF1 modulation. These findings identify the unique and coordinated roles of O11, O2, and PBF1 in regulating α-zein genes and kernel development.
Collapse
Affiliation(s)
- Runmiao Tian
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Zeyuan Yang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Ruihua Yang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Sihao Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Qingwen Shen
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Guifeng Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Hongqiu Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Qingqian Zhou
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jihua Tang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| | - Zhiyuan Fu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
12
|
Ding X, Wang S, Luo J, Liu P, He Y, Li X, Luo X, Hu W. A 294 kb deletion causes reduced leaflet size and biomass in pigeonpea. PLANT CELL REPORTS 2025; 44:98. [PMID: 40237839 DOI: 10.1007/s00299-025-03488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
KEY MESSAGE BSA-seq and fine mapping revealed a 294 kb deletion on chromosome 9 regulating leaflet size and biomass in pigeonpea. Leaf size critically influences photosynthetic capacity, impacting organic matter production and biomass yield. This study reports the identification and characterization of a small leaflet mutant (sl1) in pigeonpea (Cajanus cajan) generated via aerial mutagenesis. Compared to the wild-type Qiongzhong, sl1 displayed significantly reduced leaf area, plant height, stem diameter, and biomass, characteristic of a dwarf phenotype. Genetic analysis confirmed a single recessive locus controlling the sl1 phenotype. Bulked segregant analysis sequencing (BSA-seq) and fine mapping identified the causal mutation as a 294 kb deletion encompassing 21 genes on chromosome 9. Transcriptomic analysis identified 1,039 differentially expressed genes (DEGs), indicating disruptions in, among others, plant hormone signaling pathways. Analysis of 28 target plant hormone metabolites revealed significant shifts in sl1 mutant compared to wild-type, including increased levels of strigolactone, methyl indole-3-acetate, and trans-zeatin-riboside, and decreases in gibberellin A3, N6-isopentenyladenine, and methyl jasmonate. Cytological analysis revealed a decreased cell number in sl1 leaves, contributing to the reduced leaflet size. Three candidate genes, CC09g01700, CC09g01705, and CC09g01707, within the deleted region were prioritized based on their altered expression patterns and their putative roles in leaf development. These findings elucidate the genetic regulation of leaf morphology and biomass in pigeonpea, offering potential targets for marker-assisted selection to enhance pigeonpea yield.
Collapse
Affiliation(s)
- Xipeng Ding
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China
| | - Shangzhi Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jiajia Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China
| | - Yongwei He
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xinyong Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China
| | - Xiaoyan Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China.
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China.
| | - Wei Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China.
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China.
| |
Collapse
|
13
|
Cheng S, Xie Z, Yu H, Wang C, Yu X, Wang J, Zheng H, Lu J, He X, Chen K, Gao J, Hu Y, Yao B, Lei D, You S, Wang Q, Jian A, Jiang L, Ren Y, Guo X, Tian Y, Liu S, Liu X, Zhu S, Zhao Z, Wan J. Chromosomal structural variation loci HSS1 and HSS6 lead to hybrid sterility in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:101. [PMID: 40232312 DOI: 10.1007/s00122-025-04887-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025]
Abstract
KEY MESSAGE Chromosomal structural variation leads to rice hybrid sterility, and this study has established a new inheritance model and offers a novel insight into hybrid sterility in rice. The utilization of heterosis among different species significantly enhances rice yield. However, the direct application of this advantage is hindered by hybrid sterility (HS). Here we identify a stable semi-sterile inbred line (SSIL) in the hybridization between rice species O. sativa indica and wild rice O. longistaminata. Both pollen and spikelet fertility in heterozygous SSIL plants are semi-sterile, and the homozygous plants show normal fertility. Interestingly, unlike previously reported hybrid sterility loci, SSIL does not induce segregation distortion in progeny. The genotypes of chromosome 1 (Chr.1) exhibit tight pseudo-linkage on Chr.6 in SSIL population. HSS1 and HSS6 are named as the two loci of Chr.1 and Chr.6. Cytological observations revealed abnormalities in male and female gametes during meiosis, ultimately resulting in semi-sterile pollen and spikelet. HSS1 was narrowed down to a 190.6-kb interval and HSS6 to a 1391.6-kb region using an SSIL population of 10,393 plants. Through high-throughput sequencing and observation of chromosomal behavior during meiosis, a reciprocal translocation between the short arm of Chr.1 and the end of Chr.6 in the translocated RD23-type (RT-type) gamete in SSIL was discovered. The presence of RT-type gametes in SSIL is the direct causative factor for semi-sterility in both male and female gametes. This translocation led to abnormal SSIL-RT/L synapses and the formation of tetravalent ring structures in chromosomes during pachynema. Our findings have uncovered a pair of reciprocal chromosome translocations that control reproductive isolation in rice. These insights offer valuable guidance for optimizing hybrid breeding applications, ultimately enhancing the benefits of heterosis.
Collapse
Affiliation(s)
- Siqi Cheng
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Zhenwei Xie
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Hao Yu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Chaolong Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Xiaowen Yu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Jian Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hai Zheng
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiayu Lu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Xiaodong He
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Keyi Chen
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Junwen Gao
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Yang Hu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Bowen Yao
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Dekun Lei
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Shimin You
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Qiming Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Anqi Jian
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhigang Zhao
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China.
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
14
|
Li L, Cui S, Li X, Hou M, Liu Y, Liu L. Fine mapping and candidate gene analysis of major QTLs for number of seeds per pod in Arachis hypogaea L. BMC Genomics 2025; 26:376. [PMID: 40234740 PMCID: PMC11998195 DOI: 10.1186/s12864-025-11560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Peanut (Arachis hypogaea L., 2n = 2x = 20) is an important industrial and oil crop that is widely grown in more than 100 countries. In recent years, breeders have focused on increasing the seed number per pod to improve their yield in addition to other breeding for other key components of yield, including the pod number, seeds per pod, and 100-seed weight. RESULTS In this study, a secondary population of 1,114 BC1F2 lines was derived from a cross between the parents R45 and JNH3. Two stable major-effect quantitative trait loci of qRMPA09.1 and qRMPA09.2 were detected simultaneously and mapped within chromosomal intervals of approximately 400 Kb and 600 Kb on chromosome A09. Additionally, combined whole-genome and RNA sequencing analyses showed the differential expression of the Arahy.04JNDX gene that belongs to a MYB transcription factor (TF) between the two parents. The AhMYB51 gene was also inferred to influence the number of seeds per pod in peanuts. An examination of the backcross lines L2/L4 showed that AhMYB51 increases the rate of multiple pods per plant (RMSP) primarily by affecting brassinosteroids in the flowers, while its overexpression promotes the length of siliques in Arabidopsis thaliana. CONCLUSIONS Our findings provide valuable insights for the cloning of favorable alleles for RMSP in peanuts. The qRMSPA09.1 and qRMSPA09.2 are two novel QTL associated with the RMSP trait, with AhMYB51 predicted as its candidate gene. Moreover, the closely linked polymorphic SNP markers for loci of two significant QTLs may be useful in accelerating marker-assisted breeding in peanuts.
Collapse
Affiliation(s)
- Long Li
- College of Agronomy, State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Shunli Cui
- College of Agronomy, State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Xiukun Li
- College of Agronomy, State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Mingyu Hou
- College of Agronomy, State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Yingru Liu
- College of Agronomy, State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Lifeng Liu
- College of Agronomy, State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, 071001, P.R. China.
| |
Collapse
|
15
|
Gao Y, Peng J, Qiao Y, Wang G, Zhan J, Zhang W. Fine mapping and identification of CqMYB62 as the subgynoecy gene in chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:96. [PMID: 40204945 DOI: 10.1007/s00122-025-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
KEY MESSAGE It was hypothesized that Bch08G003160 (CqMYB62), located in the 51.08 Kb region on chromosome 08, might be an important candidate gene for the subgynoecy trait in chieh-qua, based on BSA-seq and linkage mapping approaches. In cucurbit crops, the use of female lines can greatly increase the yield of a single plant and is especially important for the production of hybrid generation seeds, thus being of great interest to breeders. To identify genes regulating sex differentiation in chieh-qua, genetic analysis of the subgynoecy trait was conducted using a chieh-qua F2 population. Initial localization of the locus was done using BSA-seq, followed by fine mapping with a large F2 population (n = 2,741). The locus was ultimately narrowed down to a 51.08 Kb region on Chr08, revealing a single gene Bch08G003160 (CqMYB62) in this region. Further analysis revealed that the presence of two variant loci (SNP_416 and SNP_317) in the coding region resulted in premature termination of the codon and loss of function of the structural domain of the PLN03212 superfamily. Moreover, our research indicated that the subgynoecy trait mediated by CqMYB62 in chieh-qua is potentially regulated by gibberellic acid (GA). Two efficient dCAPS markers were developed to distinguish subgynoecy. In summary, these findings highlight the critical role of CqMYB62 in subgynoecy trait regulation, offering potential implications for chieh-qua breeding programs.
Collapse
Affiliation(s)
- Yin Gao
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiazhu Peng
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China
| | - Yanchun Qiao
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China.
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jianpo Zhan
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China.
| | - Wensheng Zhang
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China.
| |
Collapse
|
16
|
Lian Q, Zhang Y, Zhang J, Peng Z, Wang W, Du M, Li H, Zhang X, Cheng L, Du R, Zhou Z, Yang Z, Xin G, Pu Y, Feng Z, Wu Q, Xuanyuan G, Bai S, Hu R, Negrão S, Bryan GJ, Bachem CWB, Zhou Y, Zhang R, Shang Y, Huang S, Lin T, Qi J. A genomic variation map provides insights into potato evolution and key agronomic traits. MOLECULAR PLANT 2025; 18:570-589. [PMID: 39861948 DOI: 10.1016/j.molp.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/07/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Hybrid potato breeding based on diploid inbred lines is transforming the way of genetic improvement of this staple food crop, which requires a deep understanding of potato domestication and differentiation. In the present study, we resequenced 314 diploid wild and landrace accessions to generate a variome map of 47,203,407 variants. Using the variome map, we discovered the reshaping of tuber transcriptome during potato domestication, characterized genome-wide differentiation between landrace groups Stenotomum and Phureja. We identified a jasmonic acid biosynthetic gene possibly affecting the tuber dormancy period. Genome-wide association studies revealed a UDP-glycosyltransferase gene for the biosynthesis of anti-nutritional steroidal glycoalkaloids (SGAs), and a Dehydration Responsive Element Binding (DREB) transcription factor conferring increased average tuber weight. In addition, genome similarity and group-specific SNP analyses indicated that tetraploid potatoes originated from the diploid Solanum tuberosum group Stenotomum. These findings shed light on the evolutionary trajectory of potato domestication and improvement, providing a solid foundation for advancing hybrid potato-breeding practices.
Collapse
Affiliation(s)
- Qun Lian
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Yingying Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Jinzhe Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhen Peng
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Weilun Wang
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Miru Du
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Hongbo Li
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Xinyan Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lin Cheng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ran Du
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zijian Zhou
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhenqiang Yang
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Guohui Xin
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuanyuan Pu
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhiwen Feng
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Qian Wu
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Guochao Xuanyuan
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shunbuer Bai
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Rong Hu
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Sónia Negrão
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Glenn J Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Christian W B Bachem
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ruofang Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Jianjian Qi
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
17
|
Jiang M, Li J, Huang Y, Tao B, Wu L, Chen J, Zhao L, Yi B, Ma C, Tu J, Shen J, Fu T, Wen J. Mapping and molecular marker development for the BnaSBT gene controlling inflorescence and plant architectures in B. napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:45. [PMID: 40247998 PMCID: PMC12000495 DOI: 10.1007/s11032-025-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/15/2025] [Indexed: 04/19/2025]
Abstract
Exploring the molecular mechanism underlying plant architecture and breeding new varieties suitable for mechanized harvesting are primary objectives for rapeseed breeders in China. However, few genes controlling plant architecture have been cloned in Brassica napus. In this study, SX3, a scattered-bud B. napus line with a dwarf and compact plant architecture, was characterized. To identify the genes underlying bud arrangement, plant height and branch angle, segregating populations were constructed by crossing SX3 with two clustered-bud lines with a tall and loose plant architecture. Genetic analysis revealed that the scattered-bud trait (SBT) was controlled by a single dominant gene, BnaSBT. BnaSBT is likely a pleiotropic gene that simultaneously controls plant height and branch angle. Using BSA-seq analysis, BnaSBT was mapped to a 4.15 Mb region on ChrA10. Owing to the lack of recombinants within this region, it was infeasible to finely map BnaSBT. RNA-seq analysis of BC2 plants with contrasting inflorescence and plant architectures revealed that the upregulation of genes involved in amino acid and lipid metabolism and genes encoding MADS-box transcription factors is related to the the phenotype of SX3. These findings together with comparative sequencing indicated that BnaA10.SEP1, BnaA10.AGL15, BnaA10.GLN1-4 and BnaA10.AGP15 are candidate genes for BnaSBT. Markers closely linked to the scattered-bud trait were developed for selecting dwarf and compact plants. These findings provide molecular markers and germplasms for breeding new varieties with ideal plant types and lay a theoretical foundation for cloning key genes and elucidating the genetic basis of inflorescence and plant architectures in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01556-2.
Collapse
Affiliation(s)
- Meng Jiang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jingming Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yingying Huang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Baolong Tao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lumei Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Junlin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
18
|
Lei P, Pan M, Kang S, Zeng P, Ma Y, Peng Y, Ma X, Chen W, He L, Yang H, Li W, Zhang S, Hui L, Cai J. A premature termination codon mutation in the onion AcCER2 gene is associated with both glossy leaves and thrip resistance. HORTICULTURE RESEARCH 2025; 12:uhaf006. [PMID: 40078716 PMCID: PMC11896967 DOI: 10.1093/hr/uhaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/05/2025] [Indexed: 03/14/2025]
Abstract
Plant epicuticular waxes (EW) play a critical role in defending against biotic and abiotic stresses. Notably, onions (Allium cepa L.) present a distinctive case where the mutant with defect in leaf and stalk EW showed resistance to thrips compared with the wild type with integral EW. We identified a premature stop codon mutation in the AcCER2 gene, an ortholog of CER2 gene in Arabidopsis thaliana that has been proved essential for the biosynthesis of very long-chain fatty acids (VLCFAs), in the onions with glossy leaf and stalks in our experiments. The data hinted at the possibility that this mutation might impede the elongation process of VLCFAs from C28 to C32, thereby hindering the production of 16-hentriacontanone, a primary constituent of onion EW. Transcriptomic analysis revealed substantial alterations in expression of genes in the pathways related not only to lipid synthesis and transport but also to signal transduction and cell wall modification in glossy mutants. Meanwhile, metabolomic profiling indicates a remarkable increase in flavonoid accumulation and a significant reduction in soluble sugar content in glossy mutants. These findings suggested that the enhanced resistance of glossy mutants to thrips might be a consequence of multiple physiological changes, and our integrated multiomics analysis highlighting the regulatory role of AcCER2 in these processes. Our study has yielded valuable insights into the biosynthesis of onion EW and has provided an initial hypothesis for the mechanisms underlying thrip resistance. These findings hold significant promise for the breeding programs of thrip-resistant onion.
Collapse
Affiliation(s)
- Pengzheng Lei
- Vegetable Research Center, Lianyungang Academy of Agricultural Sciences, 106 Xianghaihu Road, Haizhou District, Lianyungang 222000, China
- School of Ecology and Environment, Northwestern Polytechnical University, 1 Dongxiang Road, Changan District, Xi’an 710129, China
| | - Meihong Pan
- Vegetable Research Center, Lianyungang Academy of Agricultural Sciences, 106 Xianghaihu Road, Haizhou District, Lianyungang 222000, China
| | - Shiqiang Kang
- School of Ecology and Environment, Northwestern Polytechnical University, 1 Dongxiang Road, Changan District, Xi’an 710129, China
| | - Peng Zeng
- School of Ecology and Environment, Northwestern Polytechnical University, 1 Dongxiang Road, Changan District, Xi’an 710129, China
| | - Yu Ma
- School of Ecology and Environment, Northwestern Polytechnical University, 1 Dongxiang Road, Changan District, Xi’an 710129, China
| | - Yingmei Peng
- School of Ecology and Environment, Northwestern Polytechnical University, 1 Dongxiang Road, Changan District, Xi’an 710129, China
| | - Xiushan Ma
- School of Ecology and Environment, Northwestern Polytechnical University, 1 Dongxiang Road, Changan District, Xi’an 710129, China
| | - Wei Chen
- Vegetable Research Center, Lianyungang Academy of Agricultural Sciences, 106 Xianghaihu Road, Haizhou District, Lianyungang 222000, China
| | - Linyu He
- Vegetable Research Center, Lianyungang Academy of Agricultural Sciences, 106 Xianghaihu Road, Haizhou District, Lianyungang 222000, China
| | - Haifeng Yang
- Vegetable Research Center, Lianyungang Academy of Agricultural Sciences, 106 Xianghaihu Road, Haizhou District, Lianyungang 222000, China
| | - Weiya Li
- Vegetable Research Center, Lianyungang Academy of Agricultural Sciences, 106 Xianghaihu Road, Haizhou District, Lianyungang 222000, China
| | - Shilin Zhang
- Vegetable Research Center, Lianyungang Academy of Agricultural Sciences, 106 Xianghaihu Road, Haizhou District, Lianyungang 222000, China
| | - Linchong Hui
- Vegetable Research Center, Lianyungang Academy of Agricultural Sciences, 106 Xianghaihu Road, Haizhou District, Lianyungang 222000, China
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, 1 Dongxiang Road, Changan District, Xi’an 710129, China
| |
Collapse
|
19
|
Benoit M, Jenike KM, Satterlee JW, Ramakrishnan S, Gentile I, Hendelman A, Passalacqua MJ, Suresh H, Shohat H, Robitaille GM, Fitzgerald B, Alonge M, Wang X, Santos R, He J, Ou S, Golan H, Green Y, Swartwood K, Karavolias NG, Sierra GP, Orejuela A, Roda F, Goodwin S, McCombie WR, Kizito EB, Gagnon E, Knapp S, Särkinen TE, Frary A, Gillis J, Van Eck J, Schatz MC, Lippman ZB. Solanum pan-genetics reveals paralogues as contingencies in crop engineering. Nature 2025; 640:135-145. [PMID: 40044854 PMCID: PMC11964936 DOI: 10.1038/s41586-025-08619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/09/2025] [Indexed: 03/30/2025]
Abstract
Pan-genomics and genome-editing technologies are revolutionizing breeding of global crops1,2. A transformative opportunity lies in exchanging genotype-to-phenotype knowledge between major crops (that is, those cultivated globally) and indigenous crops (that is, those locally cultivated within a circumscribed area)3-5 to enhance our food system. However, species-specific genetic variants and their interactions with desirable natural or engineered mutations pose barriers to achieving predictable phenotypic effects, even between related crops6,7. Here, by establishing a pan-genome of the crop-rich genus Solanum8 and integrating functional genomics and pan-genetics, we show that gene duplication and subsequent paralogue diversification are major obstacles to genotype-to-phenotype predictability. Despite broad conservation of gene macrosynteny among chromosome-scale references for 22 species, including 13 indigenous crops, thousands of gene duplications, particularly within key domestication gene families, exhibited dynamic trajectories in sequence, expression and function. By augmenting our pan-genome with African eggplant cultivars9 and applying quantitative genetics and genome editing, we dissected an intricate history of paralogue evolution affecting fruit size. The loss of a redundant paralogue of the classical fruit size regulator CLAVATA3 (CLV3)10,11 was compensated by a lineage-specific tandem duplication. Subsequent pseudogenization of the derived copy, followed by a large cultivar-specific deletion, created a single fused CLV3 allele that modulates fruit organ number alongside an enzymatic gene controlling the same trait. Our findings demonstrate that paralogue diversifications over short timescales are underexplored contingencies in trait evolvability. Exposing and navigating these contingencies is crucial for translating genotype-to-phenotype relationships across species.
Collapse
Affiliation(s)
- Matthias Benoit
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Katharine M Jenike
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - James W Satterlee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Iacopo Gentile
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Anat Hendelman
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Michael J Passalacqua
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hamsini Suresh
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hagai Shohat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gina M Robitaille
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Blaine Fitzgerald
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Ohalo Genetics, Aptos, CA, USA
| | - Xingang Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Ohalo Genetics, Aptos, CA, USA
| | - Ryan Santos
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Verve Therapeutics, Boston, MA, USA
| | - Jia He
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Shujun Ou
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Genetics, Ohio State University, Columbus, OH, USA
| | | | - Yumi Green
- Boyce Thompson Institute, Ithaca, NY, USA
| | | | - Nicholas G Karavolias
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gina P Sierra
- Max Planck Tandem Group, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andres Orejuela
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena de Indias, Colombia
| | - Federico Roda
- Max Planck Tandem Group, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Elizabeth B Kizito
- Faculty of Agricultural Sciences, Uganda Christian University, Mukono, Uganda
| | - Edeline Gagnon
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Royal Botanic Garden Edinburgh, Edinburgh, UK
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | | | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| | - Michael C Schatz
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
| | - Zachary B Lippman
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
20
|
Liang Q, Feng X, Hu D, Jin Y, Wang X, Ma X, Liang R, Zhu QH, He S, Zhu H, Liu F, Zhang X, Sun J, Xue F. Genetic, metabolomic and transcriptomic analyses of the cotton yellow anther trait. Int J Biol Macromol 2025; 300:140193. [PMID: 39848383 DOI: 10.1016/j.ijbiomac.2025.140193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
In the fiber industry, cotton (Gossypium hirsutum L.) is an important crop. One of the most important morphology traits of plants is the color of the anthers, is closely related to pollen fertility and stress resistance. Upland cotton anthers appear white, while island cotton and many wild cotton species have yellow anthers. Carotenoids are natural pigments in plants which involved in many metabolic processes, including photosynthesis, photoprotection, photomorphogenesis, growth and development. Here, we characterized the yellow anther trait of G. hirsutum. Carotenoid and flavonoid profiles in the yellow anthers were greatly altered compared to that in the white anthers, indicating that both carotenoids and flavonoids contribute to the yellow anther phenotype. Map-based cloning identified GhYA (GH_A05G4013) encoding a phytoene synthase to be the candidate gene responsible for anther coloration. GhYA is predominantly expressed in anthers, with its expression level gradually decreasing with the development of anthers. Haplotype analysis revealed that white anthers are associated with two haplotypes, with X74 belonging to HAP1. Through evolutionary analysis, it was found that although there are many white anther Germplasm in upland cotton, the two types of white anther haplotypes were mutated from yellow anthers respectively. Comparative transcriptome analysis between the yellow anther and white anther accessions revealed differentially expressed genes related to both the carotenoid and flavonoid biosynthesis pathways, in line with the changed profiles of the two types of metabolites in yellow anthers; meanwhile, it also indicates potential cross-talk between the flavonoid and carotenoid pathways. According to the results, the PSY gene is critical for the regulation of carotenoids accumulation in cotton anthers.
Collapse
Affiliation(s)
- Qian Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Xiaokang Feng
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - YanLong Jin
- College of Life Sciences, Fudan University, Shanghai, China.
| | - Xuefeng Wang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - XiaoHu Ma
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Rui Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia.
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei, China.
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| |
Collapse
|
21
|
Kumar K, Durgesh K, Anjoy P, Srivastava H, Tribhuvan KU, Sevanthi AM, Singh A, Prabha R, Sharma S, Joshi R, Jain PK, Singh NK, Gaikwad K. Transcriptional Reprogramming and Allelic Variation in Pleiotropic QTL Regulates Days to Flowering and Growth Habit in Pigeonpea. PLANT, CELL & ENVIRONMENT 2025; 48:2783-2803. [PMID: 39704095 DOI: 10.1111/pce.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
The present study investigated the linkage between days to flowering (DTF) and growth habit (GH) in pigeonpea using QTL mapping, QTL-seq, and GWAS approaches. The linkage map developed here is the largest to date, spanning 1825.56 cM with 7987 SNP markers. In total, eight and four QTLs were mapped for DTF and GH, respectively, harbouring 78 pigeonpea orthologs of Arabidopsis flowering time genes. Corroboratively, QTL-seq analysis identified a single linked QTL for both traits on chromosome 3, possessing 15 genes bearing genic variants. Together, these 91 genes were clustered primarily into autonomous, photoperiod, and epigenetic pathways. Further, we identified 39 associations for DTF and 111 associations for GH through GWAS in the QTL regions. Of these, nine associations were consistent and constituted nine haplotypes (five late, two early, one each for super-early and medium duration). The involvement of multiple genes explained the range of allelic effects and the presence of multiple LD blocks. Further, the linked QTL on chromosome 3 was fine-mapped to the 0.24-Mb region with an LOD score of 8.56, explaining 36.47% of the phenotypic variance. We identified a 10-bp deletion in the first exon of TFL1 gene of the ICPL 20338 variety, which may affect its interaction with the Apetala1 and Leafy genes, resulting in determinate GH and early flowering. Further, the genic marker developed for the deletion in the TFL1 gene could be utilized as a foreground marker in marker-assisted breeding programmes to develop early-flowering pigeonpea varieties.
Collapse
Affiliation(s)
- Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- ICAR-Indian Institute of Pulses Research, Kanpur, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kumar Durgesh
- ICAR-Indian Agricultural Research Institute, Division of Genetics, New Delhi, India
| | - Priyanka Anjoy
- ICAR-Indian Agricultural Statistical Research Institute, New Delhi, India
| | | | | | | | - Anupam Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Ratna Prabha
- Agricultural Knowledge Management Unit, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rekha Joshi
- ICAR-Indian Agricultural Research Institute, Division of Genetics, New Delhi, India
| | | | | | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
22
|
Liu H, Huang Z, Wang X, Hu K, Jiang Q, Chen F, Ma Y, Cheng Z, Pan Y, Weng Y. Regreening mechanisms in cucumber: insights from a CsSIG2 mutation affecting chloroplast development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:82. [PMID: 40121605 DOI: 10.1007/s00122-025-04854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
KEY MESSAGE CsSIG2 is essential for cucumber chloroplast development, and mutations in CsSIG2 reveal mechanisms that restore chloroplast functionality and drive the regreening phenotype in the mutant. Chloroplast development and leaf color are essential traits that significantly influence plant photosynthesis and overall vigor. This study investigates a natural mutation in the cucumber that leads to a virescent leaf-color (Csvl-6) phenotype characterized by an initial yellow color in cotyledons and young leaves, which gradually transition to green as the plant matures. We utilized bulked segregant analysis and genetic linkage mapping to locate the best candidate gene sigma factor 2 (CsSIG2) on chromosome 6, identifying a single nonsynonymous SNP resulting in an arginine to glycine substitution in the CsSIG2 protein. Comparative transcriptome analysis highlighted that this mutation disrupts early chloroplast biogenesis and delays chlorophyll accumulation, but the chloroplasts can recover, leading to greening during later stages of leaf development. Our findings reveal that the recovery phenomenon involves upregulation of chloroplast-encoded genes responsible for thylakoid membrane formation and photosystem function, alongside altered expression of transcription factors linked to chlorophyll metabolism. This study elucidates the genetic and molecular basis of chloroplast development in cucumber, providing valuable insights into the mechanisms underlying leaf greening, which could inform future breeding efforts focused on manipulating leaf color traits for enhanced crop performance.
Collapse
Affiliation(s)
- Hanqiang Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Zeqiang Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinyue Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kaihong Hu
- Department of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Qinqin Jiang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feifan Chen
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Yuxuan Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yupeng Pan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yiqun Weng
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53705, USA.
| |
Collapse
|
23
|
Liu R, Hu C, Gao D, Li M, Yuan X, Chen L, Shu Q, Wang Z, Yang X, Dai Z, Yu H, Yang F, Zheng A, Lv M, Garg V, Jiao C, Zhang H, Hou W, Teng C, Zhou X, Du C, Xiang C, Xu D, Tang Y, Chitikineni A, Duan Y, Maalouf F, Agrawal SK, Wei L, Zhao N, Barmukh R, Li X, Wang D, Ding H, Liu Y, Chen X, Varshney RK, He Y, Zong X, Yang T. A special short-wing petal faba genome and genetic dissection of floral and yield-related traits accelerate breeding and improvement of faba bean. Genome Biol 2025; 26:62. [PMID: 40098156 PMCID: PMC11916958 DOI: 10.1186/s13059-025-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND A comprehensive study of the genome and genetics of superior germplasms is fundamental for crop improvement. As a widely adapted protein crop with high yield potential, the improvement in breeding and development of the seeds industry of faba bean have been greatly hindered by its giant genome size and high outcrossing rate. RESULTS To fully explore the genomic diversity and genetic basis of important agronomic traits, we first generate a de novo genome assembly and perform annotation of a special short-wing petal faba bean germplasm (VF8137) exhibiting a low outcrossing rate. Comparative genome and pan-genome analyses reveal the genome evolution characteristics and unique pan-genes among the three different faba bean genomes. In addition, the genome diversity of 558 accessions of faba bean germplasm reveals three distinct genetic groups and remarkable genetic differences between the southern and northern germplasms. Genome-wide association analysis identifies several candidate genes associated with adaptation- and yield-related traits. We also identify one candidate gene related to short-wing petals by combining quantitative trait locus mapping and bulked segregant analysis. We further elucidate its function through multiple lines of evidence from functional annotation, sequence variation, expression differences, and protein structure variation. CONCLUSIONS Our study provides new insights into the genome evolution of Leguminosae and the genomic diversity of faba bean. It offers valuable genomic and genetic resources for breeding and improvement of faba bean.
Collapse
Affiliation(s)
- Rong Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Chaoqin Hu
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Dan Gao
- Smartgenomics Technology Institute, Tianjin, 301700, China
| | - Mengwei Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin, 301700, China
| | - Qin Shu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Zonghe Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Xin Yang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Zhengming Dai
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Haitian Yu
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Feng Yang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Aiqing Zheng
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Meiyuan Lv
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Vanika Garg
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Chengzhi Jiao
- Smartgenomics Technology Institute, Tianjin, 301700, China
| | - Hongyan Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
| | - Wanwei Hou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
| | - Changcai Teng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
| | - Xianli Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
| | - Chengzhang Du
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Chao Xiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Dongxu Xu
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, Hebei, 075032, China
| | - Yongsheng Tang
- Qujing Academy of Agricultural Sciences, Qujingaq, Yunnan, 655000, China
| | - Annapurna Chitikineni
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Yinmei Duan
- Dali Academy of Agricultural Sciences, Dali, Yunnan, 671005, China
| | - Fouad Maalouf
- International Center for Agricultural Researchin the, Dry Areas (ICARDA), Beirut, 1108-2010, Lebanon
| | - Shiv Kumar Agrawal
- International Center for Agricultural Researchin the, Dry Areas (ICARDA), Beirut, 1108-2010, Lebanon
| | - Libin Wei
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, Jiangsu, 226541, China
| | - Na Zhao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, Jiangsu, 226541, China
| | - Rutwik Barmukh
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Xiang Li
- Yuxi Academy of Agricultural Sciences, Yuxi, Yunnan, 653100, China
| | - Dong Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, 250100, China
| | - Hanfeng Ding
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, 250100, China
| | - Yujiao Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China.
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Yuhua He
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China.
| | - Xuxiao Zong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China.
| | - Tao Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China.
| |
Collapse
|
24
|
Bao L, Xinhong L, Qian Y, Hui Z, Wenqing T, Mingli Y, Lichao D, Mei L, Liang Q, Yiming G. A glycogen synthase kinase-3 gene enhances grain yield heterosis in semi-dwarf rapeseed. PLANT MOLECULAR BIOLOGY 2025; 115:45. [PMID: 40085170 DOI: 10.1007/s11103-025-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/04/2025] [Indexed: 03/16/2025]
Abstract
Optimizing plant height is a key breeding objective in Brassica napus to enhance lodging resistance and increase yield potential. In the present study, we identified a semi-dwarf gene in rapeseed, BnDWARF5 (BnDF5), which encodes a glycogen synthase kinase 3, BRASSINOSTEROID-INSENSITIVE 2 (BnaC03.BIN2), primarily controlling the elongation of basal internodes by inhibiting the elongation of internode cells. Genetic mapping and cloning revealed that BnDF5 is governed by a semi-dominant/dominant gene located on chromosome C03. Sequencing uncovered an SNP in BnaC03.BIN2 due to an amino acid substitution, which was confirmed via kompetitive allele-specific polymerase chain reaction marker analysis, and expressing the mutated BnaC03.BIN2 in the wild type resulted in decreased plant height. Practical breeding applications showed that heterozygous BnDF5 plants exhibited optimal intermediate height and strong yield heterosis, making the semi-dwarf mutant a valuable genetic resource for developing semi-dwarf rapeseed varieties with improved lodging resistance and yield.
Collapse
Affiliation(s)
- Li Bao
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Liu Xinhong
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Yang Qian
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Zhang Hui
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Tan Wenqing
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Yan Mingli
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Deng Lichao
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Li Mei
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Qu Liang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Yuelushan Laboratory, Changsha, 410128, China.
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China.
| | - Guo Yiming
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Yuelushan Laboratory, Changsha, 410128, China.
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China.
| |
Collapse
|
25
|
Seifi S, Leckie KM, Giles I, O’Brien T, MacKenzie JO, Todesco M, Rieseberg LH, Baute GJ, Celedon JM. Mapping and characterization of a novel powdery mildew resistance locus (PM2) in Cannabis sativa L. FRONTIERS IN PLANT SCIENCE 2025; 16:1543229. [PMID: 40182551 PMCID: PMC11966446 DOI: 10.3389/fpls.2025.1543229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 04/05/2025]
Abstract
Introduction Breeding genetic resistance to economically important crop diseases is the most sustainable strategy for disease management and enhancing agricultural and horticultural productivity, particularly where the application of synthetic pesticides is prohibited. Powdery mildew disease, caused by the biotrophic fungal pathogen Golovinomyces ambrosiae, is one of the most prevalent threats to the cannabis and hemp industry worldwide. Methods In this study, we used bulked-segregant analysis combined with high-throughput RNA sequencing (BSRSeq) to identify and map a novel single dominant resistance (R) locus (designated PM2), that strongly suppresses powdery mildew infection and sporulation in Cannabis sativa. Results and discussion BSA mapped PM2 to chromosome 9. Histochemical analysis revealed that PM2-induced resistance is mediated by a highly localized hypersensitive response mainly in the epidermal cells of the host. Importantly, genetic markers capable of tracking PM2 resistance in breeding populations were developed using associated SNPs identified in this study. The ability to track PM2 will allow for successful introgression of PM resistance into elite cannabis cultivars and help move towards a more sustainable cannabis industry.
Collapse
Affiliation(s)
- Soren Seifi
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| | - Keegan M. Leckie
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| | - Ingrid Giles
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| | - Taylor O’Brien
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| | - John O. MacKenzie
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| | - Marco Todesco
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Loren H. Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Gregory J. Baute
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| | - Jose M. Celedon
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| |
Collapse
|
26
|
Tzuri G, Dafna A, Itzhaki B, Halperin I, Oren E, Isaacson T, Faigenboim A, Yeselson Y, Paris HS, Mazourek M, Burger J, Schaffer AA, Gur A. Meta genetic analysis of melon sweetness. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:68. [PMID: 40067361 PMCID: PMC11897113 DOI: 10.1007/s00122-025-04863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/20/2025] [Indexed: 03/15/2025]
Abstract
KEY MESSAGE Through meta-genetic analysis of Cucumis melo sweetness, we expand the description of the complex genetic architecture of this trait. Integration of extensive new results with published QTL data provides an outline towards construction of a melon sweetness pan-QTLome. An ultimate objective in crop genetics is describing the complete repertoire of genes and alleles that shape the phenotypic variation of a quantitative trait within a species. Flesh sweetness is a primary determinant of fruit quality and consumer acceptance of melons. Cucumis melo is a diverse species that, among other traits, displays extensive variation in total soluble solids (TSS) content in fruit flesh, ranging from 20 Brix in non-sweet to 180 Brix in sweet accessions. We present here meta-genetic analysis of TSS and sugar variation in melon, using six different populations and fruit measurements collected from more than 30,000 open-field and greenhouse-grown plants, integrated with 15 published melon sweetness-related quantitative trait loci (QTL) studies. Starting with characterization of sugar composition variation across 180 diverse accessions that represent 3 subspecies and 12 of their cultivar-groups, we mapped TSS and sugar QTLs, and confirmed that sucrose accumulation is the key variable explaining TSS variation. All modes-of-inheritance for TSS were displayed by multi-season analysis of a broad half-diallel population derived from 20 diverse founders, with significant prevalence of the additive component. Through parallel genetic mapping in four advanced bi-parental populations, we identified common as well as unique TSS QTLs in 12 chromosomal regions. We demonstrate the cumulative less-than-additive nature of favorable TSS QTL alleles and the potential of a QTL-stacking approach. Using our broad dataset, we were additionally able to show that TSS variation displays weak genetic correlations with melon fruit size and ripening behavior, supporting effective breeding for sweetness per se. Our integrated analysis, combined with additional layers of published QTL data, broadens the perspective on the complex genetic landscape of melon sweetness and proposes a scheme towards future construction of a crop community-driven melon sweetness pan-QTLome.
Collapse
Affiliation(s)
- Galil Tzuri
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
| | - Asaf Dafna
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
- Faculty of Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Ben Itzhaki
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Ilan Halperin
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
| | - Elad Oren
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
| | - Tal Isaacson
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
| | - Adi Faigenboim
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7507101, Rishon LeZiyyon, Israel
| | - Yelena Yeselson
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7507101, Rishon LeZiyyon, Israel
| | - Harry S Paris
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
| | - Michael Mazourek
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Joseph Burger
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel
| | - Arthur A Schaffer
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7507101, Rishon LeZiyyon, Israel
| | - Amit Gur
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, 3009500, Ramat Yishay, Israel.
| |
Collapse
|
27
|
Sai Timmarao K, Ponnam N, Lakshmanareddy DC, Krishna Reddy M, Venkataravanappa V, Roshini P, Shaik M, Manoj BP, Madhavi Reddy K. Molecular mapping and development of SSR markers associated with Chilli leaf curl virus resistance in chilli (Capsicum annuum L.). Genomics 2025; 117:111015. [PMID: 39952414 DOI: 10.1016/j.ygeno.2025.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Chilli leaf curl virus (ChLCV), caused by whiteflies transmitted begomoviruses, poses a significant threat to chilli cultivation and production all over the world. Exploring host plant resistance and identification of associated molecular markers will accelerate resistance breeding. QTL-seq analysis was employed in the IHR4615(R) × IHR2451(S) F2 population to identify QTLs associated with ChLCV-Raichur isolate resistance. A significant QTL was mapped on chromosome 6 associated with ChLCV-Raichur isolate resistance. Defense-related genes were predicted within the identified locus. Further refining of the identified locus with simple sequence repeats (SSR) markers led to the identification of two SSR markers IHR-LCV-SSR-76 and IHR-LCV-SSR-165 associated with the ChLCV-Raichur isolate resistance with 89.50 and 72.50 % prediction efficacy, respectively in IHR4615(R) × IHR2451(S) F2 population. These markers are located at 7 cM and 17.65 cM genetic distances from the resistant gene. These markers were further validated in another resistant source-based F2 population of IHR4392(S) × IHR4597(R). The developed and validated molecular markers can be explored in marker-assisted breeding programs aiming at developing resistant cultivars/ F1 hybrids of chilli.
Collapse
Affiliation(s)
- K Sai Timmarao
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India; Department of Vegetable Science, College of Horticulture, Bengaluru, University of Horticultural Sciences Bagalkot, Karnataka, India
| | - Naresh Ponnam
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - D C Lakshmanareddy
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - M Krishna Reddy
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - V Venkataravanappa
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - P Roshini
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Mahebub Shaik
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - B P Manoj
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - K Madhavi Reddy
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India.
| |
Collapse
|
28
|
Mugabe D, Najafabadi MY, Grainger C, Rajcan I. Assessment of potential candidate genes for partial resistance to Sclerotinia stem rot caused by Sclerotinia sclerotiorum using real-time quantitative PCR. THE PLANT GENOME 2025; 18:e20561. [PMID: 39912124 PMCID: PMC11800056 DOI: 10.1002/tpg2.20561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 02/07/2025]
Abstract
Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum (Lib) de Bary (S. sclerotiorum), is one of the most important diseases that causes significant soybean [Glycine max (L.) Merr.] seed yield and quality losses in Canada and globally. Initiation of plant defense mechanisms is crucial for establishing partial resistance to the pathogenic fungus. To understand plant response to S. sclerotiorum, we conducted a temporal (1, 3, and 5 days post-inoculation [DPI]) assessment of gene expression changes in the stem of soybean genotypes with contrasting phenotypic response. We focused on four genes that have been previously reported as associated with SSR partial resistance and are known to be involved in defense-related functions such as cell wall modification, signaling, response to wounding, and response to fungus. The results showed a higher and earlier expression of the genes in partially resistant cultivars compared to the susceptible. Expression of some genes increased up to 11- (Glyma.02G059700) to 16-fold (Glyma.09G232100) by 3 DPI in the partially resistant cultivar, OAC Drayton, while the genes were generally downregulated in the susceptible cultivar, OAC Shire, at the same DPI. This study improves our understanding of expression patterns of genes involved in plant defense against fungal pathogens in soybean. More importantly, the knowledge of genes that are essential in defense against S. sclerotiorum can be used to fine-map the quantitative trait loci for SSR resistance and facilitate accelerated breeding of SSR-resistant cultivars through gene-based marker-assisted selection.
Collapse
Affiliation(s)
- Deus Mugabe
- Department of Plant AgricultureUniversity of GuelphGuelphOntarioCanada
| | | | | | - Istvan Rajcan
- Department of Plant AgricultureUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
29
|
Huang Z, Bie H, Li M, Xia L, Chen L, Chen Y, Wang L, Gan Z, Cao K. Integrated GWAS, BSA-seq, and RNA-seq analyses to identify candidate genes associated with male fertility trait in peach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109525. [PMID: 39837212 DOI: 10.1016/j.plaphy.2025.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
Male sterility in peach (Prunus persica L.), characterized by the absence of fertile pollen grains in the anther, is determined by a recessive allele in homozygosis of the major gene located on chromosome 6. Developing tightly linked molecular markers can help identify appropriate peach parents or male-sterile plants for early culling in segregating progenies, thereby increasing breeding efficiency. In this study, we performed comprehensive research integrating genome-wide association study, bulked segregant analysis, and tissue-specific transcriptome sequencing for precisely characterizing the genes associated with male sterility and fertility in peach. We identified the candidate gene Prupe.6G027000, which encodes an ATP-binding cassette transporter G family member 26 (ABCG26), as a reliable candidate for controlling the targeted traits, as indicated by gene expression profiling and validated by quantitative real-time polymerase chain reaction, in situ hybridization, and virus-induced gene silencing. Prupe.6G027000 was transcribed preferentially on the tapetum and microspore surface, and its transient silencing caused severe pollen abortion in peach. The genotypes of nonsynonymous single-nucleotide variation (T > C) harbored in the coding region of Prupe.6G027000 exhibited approximately 96.2% consistency with male fertile or sterile phenotype in 579 peach accessions. These findings lay the foundation for dissecting the genetic basis of male fertility traits, and facilitating the establishment of a marker-assisted selection system in peaches.
Collapse
Affiliation(s)
- Zhenyu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Hangling Bie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Lehan Xia
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Long Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yuling Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lirong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Zengyu Gan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Ke Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China.
| |
Collapse
|
30
|
Qiu L, Fang R, Jia Y, Xiong H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Li C, Guo H, Liu L. The allelic mutation of NBS-LRR gene causes premature senescence in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112395. [PMID: 39842697 DOI: 10.1016/j.plantsci.2025.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Premature senescence has a significant impact on the yield and quality of wheat crops. The process is controlled by multiple and intricate genetic pathways and regulatory elements, whereby the discovery of additional mutants provides important insights into the molecular basis of this important trait. Here, we developed a premature senescence wheat mutant je0874, its leaves started to show yellow before heading stage; with plant growth and development, the degree of yellowing worsened rapidly, and chlorophyll content in flag leaf was reduced by 93.8 % at 15 days after heading, all other leaves became dryness at the grain filling stage. In the mutant, the reactive oxygen species (ROS) and its metabolites increased up to 34.8-47.3 %, while activities of ROS scavenging enzymes were reduced by 62.7-96.7 %. Premature senescence resulted in a reduction of thousand grain weight by over 50 %. Genetic analysis showed the mutation of senescence was controlled by a single recessive gene, and target gene was finely mapped to a 338 kb region of the long arm of chromosome 2D. This region contained a total of 6 annotated genes, while only gene TraesFLD2D01G513900 carried a SNP mutation. The gene contained an NBS-LRR domain, we named it Taps1. Allelic mutants of Taps1 exhibited a lesion mimic phenotype, and the mutant allele resulted in cell death in tobacco, which represent a novel gene controlling wheat senescence. Two haplotypes were identified in 180 accessions, which did not lead to cell death. These results contribute to increase our understanding of the regulation of premature plant senescence.
Collapse
Affiliation(s)
- Lin Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China; Institute of Crop resources, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Rongmin Fang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yong Jia
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Hongchun Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yongdun Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Jiayu Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Shirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yuping Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Huijun Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China.
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China.
| |
Collapse
|
31
|
Soler‐Garzón A, Lopes FS, Roy J, Clevenger J, Myers Z, Korani W, Pereira WA, Song Q, Porch T, McClean PE, Miklas PN. Mapping resistance to Sclerotinia white mold in two pinto bean recombinant inbred line populations. THE PLANT GENOME 2025; 18:e20538. [PMID: 39653039 PMCID: PMC11726412 DOI: 10.1002/tpg2.20538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 01/14/2025]
Abstract
White mold, caused by the fungus Sclerotinia sclerotiorum (Lib.) de Bary, is a devastating disease affecting common bean (Phaseolus vulgaris L.) production worldwide. Breeding for resistance to white mold is challenging due to its quantitative inheritance and intricate genetic mechanisms. This research aimed to validate and characterize physiological resistance in the pinto dry bean market class through greenhouse straw tests under controlled conditions and field assessments under natural environments. Classical quantitative trait locus (QTL) mapping and Khufu de novo QTL-seq were employed to detect and narrow QTL intervals and identify candidate genes associated with white mold resistance in two pinto bean recombinant inbred line populations, PT9-5-6/USPT-WM-12 (P2) and PT12-37/VCP-13 (P3). Eleven QTL, five in P2 and six in P3, conditioning white mold resistance were identified. New QTL were discovered including WM1.4 and WM11.5 in P2, and WM1.5 and WM7.7 in P3. Existing major-effect QTL were validated: WM5.4 (34%-phenotypic variation explained) and WM7.4 (20%) in straw tests, and WM2.2 (15%) and WM3.1 (27%) under field conditions. QTL for avoidance traits such as resistance to lodging and late maturity overlapped WM2.2 in P2 and WM1.5, WM3.1, WM5.4, and WM7.7 in P3. WM5.4 (Pv05: 7.0-38.7 Mb) was associated with a large Phaseolus coccineus L. genome introgression in the resistant parent VCP-13. These findings offer narrowed genomic intervals and putative candidate genes for marker-assisted selection targeting white mold resistance improvement in pinto beans.
Collapse
Affiliation(s)
- Alvaro Soler‐Garzón
- Irrigated Agriculture Research and Extension CenterWashington State UniversityProsserWashingtonUSA
| | | | - Jayanta Roy
- Department of Plant SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
| | - Josh Clevenger
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Zachary Myers
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Walid Korani
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | | | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA‐ARSBeltsvilleMarylandUSA
| | - Timothy Porch
- USDA‐ARS, Tropical Agricultural Research StationMayagüezPuerto RicoUSA
| | - Phillip E. McClean
- Department of Plant SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
| | - Phillip N. Miklas
- USDA‐ARS, Grain Legume Genetics and Physiology Research UnitProsserWashingtonUSA
| |
Collapse
|
32
|
Zhou K, Wu F, Deng L, Xiao Y, Yang W, Zhao J, Wang Q, Chang Z, Zhai H, Sun C, Han H, Du M, Chen Q, Yan J, Xin P, Chu J, Han Z, Chai J, Howe GA, Li CB, Li C. Antagonistic systemin receptors integrate the activation and attenuation of systemic wound signaling in tomato. Dev Cell 2025; 60:535-550.e8. [PMID: 39631391 DOI: 10.1016/j.devcel.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Pattern recognition receptor (PRR)-mediated perception of damage-associated molecular patterns (DAMPs) triggers the first line of inducible defenses in both plants and animals. Compared with animals, plants are sessile and regularly encounter physical damage by biotic and abiotic factors. A longstanding problem concerns how plants achieve a balance between wound defense response and normal growth, avoiding overcommitment to catastrophic defense. Here, we report that two antagonistic systemin receptors, SYR1 and SYR2, of the wound peptide hormone systemin in tomato act in a ligand-concentration-dependent manner to regulate immune homeostasis. Whereas SYR1 acts as a high-affinity receptor to initiate systemin signaling, SYR2 functions as a low-affinity receptor to attenuate systemin signaling. The expression of systemin and SYR2, but not SYR1, is upregulated upon SYR1 activation. Our findings provide a mechanistic explanation for how plants appropriately respond to tissue damage based on PRR-mediated perception of DAMP concentrations and have implications for uncoupling defense-growth trade-offs.
Collapse
Affiliation(s)
- Ke Zhou
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Fangming Wu
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Yu Xiao
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wentao Yang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhai Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Qinyang Wang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeqian Chang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawei Zhai
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chuanlong Sun
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Hongyu Han
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Minmin Du
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Chen
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jijun Yan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifu Han
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Jijie Chai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Chang-Bao Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Chuanyou Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
33
|
Xie G, Zhang Y, Xiao S, Wu D, Wang H, Shen Q. Molecular mapping of candidate genes in determining red color of perilla leaf. ADVANCED BIOTECHNOLOGY 2025; 3:7. [PMID: 39951168 PMCID: PMC11828775 DOI: 10.1007/s44307-025-00058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Perilla frutescens is a traditional medicinal plant and functional food in Asian communities, characterized by distinct red and green leaf types that have significant phenotypic and medicinal implications. However, the genetic mechanisms controlling anthocyanin synthesis in this species remain unclear. Genetic analysis serves as a powerful tool for investigating the pivotal genes and regulatory mechanisms governing anthocyanin accumulation in red and green perilla. In this study, an F2 segregation population was constructed from a hybrid of red and green perilla, and representative samples were subjected to mix-sequencing using BSA-seq and BSR-seq. A 6.0 Mb candidate region on chromosome 8 was identified, pinpointing PfMYB113b, PfC4H1, and PfF3H as key genes involved in anthocyanin biosynthesis. The insertion of a repeat sequence in the promoter of PfMYB113b leads to alterations in gene expression levels. Furthermore, PfMYB113b regulates the transcription of PfC4H1 and PfF3H, thereby influencing anthocyanin synthesis. These findings enhance our understanding of the genetic regulatory mechanisms underlying leaf coloration in perilla.
Collapse
Affiliation(s)
- Guanwen Xie
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuxuan Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shen Xiao
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Duan Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hongbin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
34
|
Raman R, Qiu Y, Coombes N, Raman H. Identification and validation of genomic regions for pod shatter resistance in Brassica rapa using QTL-seq and traditional QTL mapping. BMC PLANT BIOLOGY 2025; 25:175. [PMID: 39930375 PMCID: PMC11808946 DOI: 10.1186/s12870-025-06155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Pod shatter resistance is an important trait in Brassica species, significantly impacting the yield and profitability of growers. Identifying genomic regions and understanding genes underlying shatter resistance is a major objective of breeding programs. Brassica rapa, commonly known as rape or field mustard, is an ancestral species of Brassica napus and Brassica juncea - the most widely oilseed crops grown worldwide. In this study, we performed diversity analysis of B. rapa accessions, bulked segregant analysis based quantitative trait locus-sequencing (QTL-seq), and traditional quantitative trait locus (QTL) mapping in an F2 population to identify genomic regions associated with pod shatter resistance in B. rapa. RESULTS A considerable genetic variation for pod shatter resistance, measured as rupture energy (RE), varied from 0.63 to 3.49 mJ(½) was revealed among 90 accessions of B. rapa. Cluster analysis based on 10,324 DArTseq markers showed that pod shatter-resistant accessions originated from diverse sources. We further investigated the genetic and anatomical bases of variation in pod shatter resistance from two contrasting parental lines, ATC90153 (maternal parent with high RE) and ATC91215 (paternal parent with low RE). Bulked segregant resequencing analysis of parental lines and two pooled samples, prepared from 10 resistant and 10 sensitive lines to pod shatter, identified three genomic regions for shatter resistance on chromosomes A06 and A09. Traditional QTL analysis validated marker-pod shatter resistance associations on chromosomes A06 and A09 in the same F2 population using a linkage map based on 23,274 DArTseq markers. Physical positions of significantly associated markers and the priori pod dehiscence genes on the B. rapa reference genome sequence suggested BEE1/PEROXIDASE/TCP8 on A06 and ADPG1/SHP1/MYB116 genes on A09 as potential candidates for pod shatter resistance. Sequence comparison of parental lines identified sequence variants (194 SNPs and 74 InDELs on A06, and two SNPs and two InDELs on A09) in the promoter and downstream regions of B. rapa genes within the QTL. CONCLUSIONS We identified QTLs and priori candidate genes associated with variation in pod shatter resistance on chromosomes A06 and A09 in B. rapa. This study provides potential gene targets to understand molecular mechanisms and improve pod shatter resistance in Brassica crops.
Collapse
Affiliation(s)
- Rosy Raman
- NSW Department of Primary Industries and Rural Development, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - Yu Qiu
- NSW Department of Primary Industries and Rural Development, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - N Coombes
- NSW Department of Primary Industries and Rural Development, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - Harsh Raman
- NSW Department of Primary Industries and Rural Development, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
35
|
Wang Z, Yang J, Huang T, Chen Z, Nyasulu M, Zhong Q, He H, Bian J. Genetic Analysis of the Awn Length Gene in the Rice Chromosome Segment Substitution Line CSSL29. Int J Mol Sci 2025; 26:1436. [PMID: 40003903 PMCID: PMC11855105 DOI: 10.3390/ijms26041436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Awn length is a significant agronomic trait in rice. To analyze the genetic mechanism of awn length in the chromosome segment substitution line 29 (CSSL29) derived from 9311 (recipient) into Nipponbare (NIP, donor), an F2 segregated population was constructed from 9311 (indica) and CSSL29. The population and candidate genes were analyzed using quantitative trait loci sequencing (QTL-seq), yeast two-hybrid assays, and 3 k and 10 k rice population databases. The results indicated that the awn length in the F2 segregating population followed a normal distribution, and the long-awn phenotype in CSSL29 was controlled by multiple genes. Through BSA sequencing data, a major QTL qAWN4 associated with rice awn length was identified on chromosome 4, containing the cloned gene An-2. Further investigation of the CSSL29 long-awn substitution segment revealed the presence of the awn length gene An-1, with both genes exhibiting an additive effect on the regulation of the long-awn phenotype. Yeast two-hybrid experiments confirmed no interaction between An-2 and An-1, suggesting that additive effect awn length regulation is not mediated through simple protein-to-protein binding. Population genetic analysis indicated that the An-2 allele was artificially selected during domestication but did not significantly differ between indica and japonica subspecies. These findings enhance our understanding of the genetic regulation of rice awn length and the domestication of long-awn rice, laying the groundwork for future research in this area.
Collapse
Affiliation(s)
- Zhengjie Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Jun Yang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Tao Huang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Zhihao Chen
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Mvuyeni Nyasulu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Qi Zhong
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Haohua He
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Jianmin Bian
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| |
Collapse
|
36
|
Wang C, Wang Y, Wang G, Zhang K, Liu Z, Li X, Xu W, Li Z, Qu S. The calcium-dependent protein kinase CmaCPK4 regulates sex determination in pumpkin (Cucurbita maxima D.). PLANT PHYSIOLOGY 2025; 197:kiae666. [PMID: 39700433 DOI: 10.1093/plphys/kiae666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 12/21/2024]
Abstract
Pumpkin (Cucurbita maxima D.) is typically monoecious with individual male and female flowers, and its yield is associated with the degree of femaleness, i.e. the ratio of female to male flowers produced by the plant. Subgynoecy represents a sex form with a high degree of femaleness, but the regulatory mechanisms in pumpkin remain poorly understood. In this study, using the F2 population crossed from the subgynoecious line 2013-12 and the monoecious line 9-6, we initially identified a recessive locus to control the subgynoecious trait and named it sg1. After bulked segregant analysis with whole-genome resequencing and molecular marker linkage analysis, the sg1 locus was mapped to pumpkin Chromosome 2. Genetic sequence analysis found a pumpkin calcium-dependent protein kinase (CPK) gene, CmaCPK4, in the mapping interval as the candidate gene. A retrotransposon insertion identified within the promoter elevated CmaCPK4 expression in 2013-12. Morphological characterization of near-isogenic lines containing the sg1 allele showed increases in the ratio of female flowers and high ethylene contents in terminal buds compared with the receptor parent. Heterologous overexpression of CmaCPK4 significantly increased the ratio of female flowers in cucumber (Cucumis sativus). Furthermore, CmaCPK4 directly interacts with and phosphorylates 1-aminocyclopropane-1-carboxylate synthase 5 (CmaACS5) and 1-aminocyclopropane-1-carboxylate synthase 7 (CmaACS7), resulting in increased ethylene content in 2013-12, which affected pumpkin sex determination. These findings provide insights into the role of the CmaCPK4-CmaACS5/CmaACS7 module in ethylene-induced sex determination in pumpkin.
Collapse
Affiliation(s)
- Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Guichao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ke Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhe Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaopeng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
37
|
Xiao L, Zhang J, Guo S, Jin H, Ouyang Q, Long X, Yan Z, Tian E. Exploration of the molecular mechanism behind a novel natural genic male-sterile mutation of 1205A in Brassica napus. BMC PLANT BIOLOGY 2025; 25:142. [PMID: 39901064 PMCID: PMC11789325 DOI: 10.1186/s12870-025-06150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
The use of a male sterility hybrid seed production system has resulted in a significant increase in rapeseed yields by over 20%. Nevertheless, the mechanisms underlying male sterility remain largely unexamined. This study presents a spontaneous recessive genic male-sterile (RGMS) mutant of 1205A, which was employed to establish two two-line hybrid production systems: 1205AB and NT7G132AB. Cytological investigations reveal that the mutation occurs at the early microspore stage, resulting in premature degradation of pollen. Through inheritance analysis, linkage mapping, and bulked-segregant analysis sequencing (BSA-Seq), a single gene locus, designated Bna1205ams1, was identified within the QTL region on chrC03 (15.36-18.90 Mb). The development of three newly co-segregated kompetitive allele-specific PCR (KASP) markers, in conjunction with two traditional co-segregated markers, allowed for the refinement of the QTL of Bna1205ams1 to a segment of 181.47 kb. This refinement facilitated the identification of a candidate gene, BnaC03g27700D, through functional and expression analyses. Furthermore, the subcellular localization of BnaC03g27700D was examined. Metabolic fluctuations associated with the fertility gene were observed, particularly in processes related to aborted tapetal programmed cell death (PCD), which may contribute to reduced pollen fertility with abnormal pollen exine. A strong correlation was also established between BnaC03g27700D and thirteen metabolites. This study not only offers valuable insights into the research and practical application of plant male sterility but also serves as a case study on the genetic regulatory mechanisms governing male sterility.
Collapse
Affiliation(s)
- Lijing Xiao
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Jinze Zhang
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Shaomin Guo
- Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550081, China
| | - Hairun Jin
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Qingjing Ouyang
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Xu Long
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Zhongbin Yan
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China
| | - Entang Tian
- Agricultural College of Guizhou University, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
38
|
Heng S, Li X, Li M, Jiang L, Li M, Zeng W, Mao G, Xing F, Wan Z, Wen J, Shen J, Fu T. Two novel alleles of the MYB transcription factor BjA06.GL1 and BjB02.GL1 control leaf trichomes and enhance resistance to aphids in Brassica juncea. HORTICULTURE RESEARCH 2025; 12:uhae314. [PMID: 40041606 PMCID: PMC11879403 DOI: 10.1093/hr/uhae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/06/2024] [Indexed: 03/06/2025]
Abstract
Leaf trichome formation is a very important agronomic trait as it confers resistance to biotic and abiotic stresses, but the causal genes involved in this process in Brassica juncea remain largely unexplored. In this study, we first characterized the haplotypes of BjB02.GL1 among different inbred lines with leaf trichomes or glabrous leaves. A comparative analysis of the number and density of leaf trichomes between the two mustard inbred lines was then performed. BSA analysis of leaves with trichomes and glabrous pools from the F2 segregating population mapped the candidate genes on Chr.A06 and Chr.B02. Two candidate genes, BjA06.GL1 and BjB02.GL1, were subsequently cloned. After sequence alignment of the BjGL1 genes, both single-nucleotide polymorphisms (SNPs) and indel were identified in the BjA06.GL1 and BjB02.GL1 genes. And quantitative real-time polymerase chain reaction (qRT-PCR) analysis further confirmed that both the BjA06.GL1 and BjB02.GL1 genes were more highly expressed in leaves with trichomes than in glabrous leaves. As the leaf size increased, the leaf trichome density decreased. Gene editing of both BjA06.GL1 and BjB02.GL1 changed the leaf trichome to a glabrous leaf phenotype in mustard. In addition, plants with leaf trichomes presented greater resistance to aphids. Taken together, our results revealed that both BjA06.GL1 and BjB02.GL1 positively regulate leaf trichome formation and help increase aphid resistance in mustard. This study provides valuable resources and helps to elucidate the molecular mechanism of leaf trichome formation in B. juncea.
Collapse
Affiliation(s)
- Shuangping Heng
- College of Life Science, Xinyang Normal University, No. 237 Nauhu Road, Changan District, Xinyang 464000, China
| | - Xiaolin Li
- College of Life Science, Xinyang Normal University, No. 237 Nauhu Road, Changan District, Xinyang 464000, China
| | - Man Li
- College of Life Science, Xinyang Normal University, No. 237 Nauhu Road, Changan District, Xinyang 464000, China
| | - Lulu Jiang
- College of Life Science, Xinyang Normal University, No. 237 Nauhu Road, Changan District, Xinyang 464000, China
| | - Meng Li
- College of Life Science, Xinyang Normal University, No. 237 Nauhu Road, Changan District, Xinyang 464000, China
| | - Wei Zeng
- College of Life Science, Xinyang Normal University, No. 237 Nauhu Road, Changan District, Xinyang 464000, China
| | - Guangzhi Mao
- College of Life Science, Xinyang Normal University, No. 237 Nauhu Road, Changan District, Xinyang 464000, China
| | - Feng Xing
- College of Life Science, Xinyang Normal University, No. 237 Nauhu Road, Changan District, Xinyang 464000, China
| | - Zhengjie Wan
- National Key Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| |
Collapse
|
39
|
Lee JH, Kim JM, Kwon JK, Kang BC. Fine mapping of the Chilli veinal mottle virus resistance 4 (cvr4) gene in pepper (Capsicum annuum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:19. [PMID: 39777543 PMCID: PMC11706928 DOI: 10.1007/s00122-024-04805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
KEY MESSAGE The single recessive Chilli veinal mottle virus resistance locus, cvr4, was fine-mapped in pepper through bulked segregant RNA sequencing combined with gene silencing analysis. Chilli veinal mottle virus (ChiVMV) is a widespread pathogen affecting the production of peppers (Capsicum annuum L.) in Asia and Africa. Few loci conferring resistance to ChiVMV have been identified, severely limiting the development of resistant cultivars. To identify ChiVMV resistance genes, we constructed an F2:3 segregating population derived from a cross between the ChiVMV-resistant cultivar 'CV9' and the susceptible cultivar 'Jeju'. The inheritance study of F2:3 populations showed a 1:3 ratio of resistant to susceptible individuals, demonstrating the existence of a single recessive ChiVMV resistance gene in CV9; we named this gene cvr4. To map the cvr4 locus, we employed bulked segregant analysis by RNA sequencing (BSR-seq) of pools from resistant and susceptible F2:3 individuals. We mapped cvr4 to the telomeric region of pepper chromosome 11. To narrow down the cvr4 locus, we developed additional molecular markers in the cvr4 target region, leading to a 2-Mb region of chromosome 11 showing complete co-segregation with the ChiVMV resistance phenotype. Using the polymorphisms identified during BSR-seq, we defined a list of 15 candidate genes for cvr4, which we tested through virus-induced gene silencing analysis for ChiVMV resistance. Of these, the silencing of several genes (DEM.v1.00021323, DEM.v1.00021336, and DEM.v1.00021337) restricted virus spread. Although DEM.v1.00021323 transcript levels were similar between the resistant and susceptible bulks, its alternative spliced isoforms differed in abundance, suggesting that the splicing variants of DEM.v1.00021323 might affect viral infection. These findings may facilitate the breeding of ChiVMV-resistant cultivars in pepper.
Collapse
Affiliation(s)
- Joung-Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Min Kim
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- FarmyirehSe Co., Ltd., Seoul, 08826, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- FarmyirehSe Co., Ltd., Seoul, 08826, Republic of Korea.
| |
Collapse
|
40
|
Xu X, Liang Y, Feng G, Li S, Yang Z, Nie G, Huang L, Zhang X. A favorable natural variation in CCD7 from orchardgrass confers enhanced tiller number. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17200. [PMID: 39666830 DOI: 10.1111/tpj.17200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Tiller number is a crucial determinant that significantly influences the productivity and reproductive capacity of forage. The regeneration potential, biomass production, and seed yield of perennial forage species are highly reliant on the development of tillering. Strigolactones (SLs) are recently discovered carotenoid-derived phytohormones that play a crucial role in the regulation of tillering in annual crops. However, the modulation of tiller growth in perennial forage by SLs remains insufficiently investigated. In this study, we identified two alleles of the SLs biosynthesis gene, DgCCD7A and DgCCD7D, which encode CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), from two distinct subspecies of orchardgrass (Dactylis glomerata) exhibiting contrasting tillering phenotype and SLs content. The functionality of the DgCCD7A allele derived from high-tillering phenotypic orchardgrass was found to be diminished compared to that of DgCCD7D from the low-tillering type in rescuing the increased branching phenotype of CCD7-defective mutants in Arabidopsis and rice (Oryza sativa). Notably, the introduction of DgCCD7A in rice resulted in an increase in tiller number without significantly compromising grain yield. Moreover, we demonstrated that the L309P variation in DgCCD7A is a rare natural variant exclusively found in orchardgrass. Our findings revealed that DgCCD7A, a rare favorable natural variation of CCD7 in orchardgrass, holds significant potential for breeding application in improving the plant architecture of perennial forage and crops.
Collapse
Affiliation(s)
- Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunfeng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
41
|
Zhou Q, Qu T, Li D, Zheng Y, Zhang L, Li Y, Wang J, Hou X, Liu T. Bcwf regulates the white petal color in pak choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112290. [PMID: 39396618 DOI: 10.1016/j.plantsci.2024.112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Flower color is important in determining the ornamental value of Brassica species. However, our knowledge about the regulation of flower color in pak choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis] is limited. In this study, we investigated the molecular mechanism underlying white flower traits in pak choi by analyzing a genetic population with white and yellow flowers. Our genetic analysis revealed that the white trait is controlled by a single recessive gene called Bcwf. Through BSA-Seq and fine mapping, we identified a candidate gene, BraC02g039450.1, which is similar to Arabidopsis AtPES2 involved in carotenoid ester synthesis. Sequence analysis showed some mutations in the promoter region of Bcwf in white flowers. Tobacco transient assay confirmed that these mutations reduce the promoter's activity, leading to downregulation of Bcwf expression in white flowers. Furthermore, the silencing of Bcwf in pak choi resulted in lighter petal color and reduced carotenoid content. These findings provide new insights into the molecular regulation of white flower traits in pak choi and highlight the importance of Bcwf in petal coloring and carotenoid accumulation.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tianhui Qu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yushan Zheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China.
| | - Liting Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianjun Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; Sanya institute of Nanjing Agricultural University, Sanya 572025, China.
| |
Collapse
|
42
|
Liu L, Wang Y, Guo J, Han Z, Yu K, Song Y, Chen H, Gao H, Yang Y, Zhao Z. Natural variation in MdNAC5 contributes to fruit firmness and ripening divergence in apple. HORTICULTURE RESEARCH 2025; 12:uhae284. [PMID: 39866962 PMCID: PMC11758708 DOI: 10.1093/hr/uhae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025]
Abstract
Fruit firmness is an important trait for characterizing the quality and value of apple. It also serves as an indicator of fruit maturity, as it is a complex trait regulated by multiple genes. Resequencing techniques can be employed to elucidate variations in such complex fruit traits. Here, the whole genomes of 294 F 1 hybrids of 'Fuji' and 'Cripp's Pink' were resequenced, and a high-density binmap was constructed using 5014 bin markers with a total map distance of 2213.23 cM and an average map distance of 0.44 cM. Quantitative trait loci (QTLs) of traits related to fruit were mapped, and an A-T allele variant identified in the coding region of MdNAC5 was found to potentially regulate fruit firmness and ripening. The overexpression of MdNAC5 A resulted in higher production of methionine and 1-aminocyclopropanecarboxylic acid compared to MdNAC5 T , leading to reduced fruit firmness and accelerated ripening in apples and tomatoes. Furthermore, the activities of MdNAC5 A and MdNAC5 T were enhanced through their differential binding to the promoter regions of MdACS1 and MdERF3. Spatial variations in MdNAC5 A and MdNAC5 T caused changes in MdACS1 expression following their interaction with MdERF3. Ultimately, utilizing different MdNAC5 alleles offers a strategy to manipulate fruit firmness in apple breeding.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianhua Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ziqi Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kaixuan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaxiao Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongfei Chen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yazhou Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
43
|
Li K, Huo C, Long H, Tang K, Zhang S. Identification of the Mitf gene mutation causing congenital deafness and pigmentation disorders in porcupines using BSA-Seq. Sci Rep 2024; 14:31480. [PMID: 39732942 PMCID: PMC11682210 DOI: 10.1038/s41598-024-82975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Worldwide, congenital deafness and pigmentation disorders impact millions with their diverse manifestations, and among these genetic conditions, mutations in the Microphthalmia-associated transcription factor (MITF: OMIM#156845) gene are notable for their profound effects on melanocyte development and auditory functions. This study reports a novel porcupine model exhibiting spontaneous deafness and pigmentation abnormalities reminiscent of human Waardenburg Syndrome Type 2 (WS2: OMIM#193510). Through phenotypic characterization, including coat color, skin, eye morphology, and auditory brainstem response (ABR) assessments, we identified hypopigmentation and complete deafness in mutant porcupines. To pinpoint the genetic basis, a breeding program was established, and Bulk Segregant Analysis (BSA) combined with RNA sequencing was conducted. Primers based on the identified candidate genes were designed for PCR amplification, followed by verification through Sanger sequencing. Through BSA analysis, we identified a total of 88 SNP and 336 InDel candidate sites. By annotating the Mitf gene, we obtained four unique transcript sequences. The SNP and InDel sites within the porcupine Mitf gene sequence, identified through BSA screening, were analyzed in conjunction with the gene's annotation results. This analysis revealed a specific mutation site, Mitf c.875_877delGAA p. (Arg217del), which was subsequently verified by Sanger sequencing. This naturally occurring Mitf mutation in porcupines provides a valuable model for studying the mechanisms underlying WS2 and exploring potential therapeutic strategies for deafness and pigmentation-related disorders.
Collapse
Affiliation(s)
- Kang Li
- Zunyi Medical University, Zunyi, China
| | | | - Hong Long
- Zunyi Medical University, Zunyi, China
| | | | | |
Collapse
|
44
|
Arrones A, Manrique S, Gomis-Cebolla J, Baraja-Fonseca V, Plazas M, Prohens J, Portis E, Barchi L, Giuliano G, Gramazio P, Vilanova S. Irregular green netting of eggplant fruit peel: a domestication trait controlled by SmGLK2 with potential for fruit colour diversification. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7066-7078. [PMID: 39171373 PMCID: PMC11630072 DOI: 10.1093/jxb/erae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
The distribution of chlorophylls in eggplant (Solanum melongena) peel exhibits either a uniform pattern or an irregular green netting pattern. The latter, manifested as a gradient of dark green netting that is intensified in the proximal part of the fruit on a pale green background, is common in wild relatives and some eggplant landraces. Despite the selection of uniform chlorophylls during domestication, the netting pattern contributes to a greater diversity of fruit colours. Here, we used over 2300 individuals from different populations, including a multi-parent advanced generation inter-cross population for candidate genomic region identification, an F2 population for bulked segregant analysis by sequencing, and advanced backcrosses for edges-to-core fine-mapping, to identify SmGLK2 gene as responsible for the irregular netting in eggplant fruits. We also analysed the gene sequence of 178 S. melongena accessions and 22 wild relative species for tracing the evolutionary changes that the gene has undergone during domestication. Three different mutations were identified leading to the absence of netting. The main causative indel induces a premature stop codon disrupting the protein conformation and function, which was confirmed by western blot analysis and confocal microscopy observations. SmGLK2 has a major role in regulating chlorophyll biosynthesis in eggplant fruit peel.
Collapse
Affiliation(s)
- Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Silvia Manrique
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Joaquin Gomis-Cebolla
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Virginia Baraja-Fonseca
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Grugliasco, Italy
| | - Lorenzo Barchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Grugliasco, Italy
| | - Giovanni Giuliano
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| |
Collapse
|
45
|
Zhang B, Yang HJ, Li YN, Zhu ZZ, Zhao ZY, Yang YZ. MdNAC5: a key regulator of fructose accumulation in apple fruit. THE NEW PHYTOLOGIST 2024; 244:2458-2473. [PMID: 39363422 DOI: 10.1111/nph.20158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/07/2024] [Indexed: 10/05/2024]
Abstract
The sweetness of apple fruit is a key factor in the improvement of apple varieties, with fructose being the sweetest of the soluble sugars, playing a crucial role in determining the overall sweetness of the apple. Therefore, uncovering the key genes controlling fructose accumulation and deciphering the regulatory mechanisms of fructose are vitally important for the improvement of apple varieties. In this study, through BSA-seq and transcriptome analysis of the 'Changfu 2' × 'Golden Delicious' F1 hybrid population, MdNAC5 was identified as a key regulatory gene for fructose content. MdNAC5 was shown to significantly influence fructose accumulation in both apples and tomatoes. Furthermore, we conducted a detailed identification of sugar transporters and metabolic enzymes in apples, discovering that MdNAC5 can enhance fructose accumulation in vacuoles and the conversion of sucrose to fructose by binding to and activating the promoters of the vacuolar sugar transporter MdTST2 and the neutral invertase MdNINV6. Additionally, MdNAC5 regulated the MdEIN3.4-MdSWEET15a module, strengthening the unloading of sucrose in the phloem of the fruit. Our results reveal a new mechanism by which MdNAC5 regulates fructose accumulation in apples and provide theoretical foundations for improving apple sweetness through genetic modification.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, Shaanxi, 712100, China
| | - Hui-Juan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, Shaanxi, 712100, China
| | - Ya-Nan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, Shaanxi, 712100, China
| | - Zhen-Zhen Zhu
- Yangling Fruit Industry Innovation Center, Yangling, Shaanxi, 712100, China
| | - Zheng-Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, Shaanxi, 712100, China
| | - Ya-Zhou Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, Shaanxi, 712100, China
| |
Collapse
|
46
|
Hu W, Chen Y, Xu Z, Liu L, Yan D, Liu M, Yan Q, Zhang Y, Yang L, Gao C, Liu R, Qin W, Miao P, Ma M, Wang P, Gao B, Li F, Yang Z. Natural variations in the Cis-elements of GhRPRS1 contributing to petal colour diversity in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3473-3488. [PMID: 39283921 PMCID: PMC11606410 DOI: 10.1111/pbi.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 11/27/2024]
Abstract
The cotton genus comprises both diploid and allotetraploid species, and the diversity in petal colour within this genus offers valuable targets for studying orthologous gene function differentiation and evolution. However, the genetic basis for this diversity in petal colour remains largely unknown. The red petal colour primarily comes from C, G, K, and D genome species, and it is likely that the common ancestor of cotton had red petals. Here, by employing a clone mapping strategy, we mapped the red petal trait to a specific region on chromosome A07 in upland cotton. Genomic comparisons and phylogenetic analyses revealed that the red petal phenotype introgressed from G. bickii. Transcriptome analysis indicated that GhRPRS1, which encodes a glutathione S-transferase, was the causative gene for the red petal colour. Knocking out GhRPRS1 resulted in white petals and the absence of red spots, while overexpression of both genotypes of GhRPRS1 led to red petals. Further analysis suggested that GhRPRS1 played a role in transporting pelargonidin-3-O-glucoside and cyanidin-3-O-glucoside. Promoter activity analysis indicated that variations in the promoter, but not in the gene body of GhRPRS1, have led to different petal colours within the genus. Our findings provide new insights into orthologous gene evolution as well as new strategies for modifying promoters in cotton breeding.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Yanli Chen
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of AgricultureNanjingChina
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjingChina
| | - Linqiang Liu
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Da Yan
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Miaoyang Liu
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Qingdi Yan
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Yihao Zhang
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Lan Yang
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Chenxu Gao
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Renju Liu
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Wenqiang Qin
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Pengfei Miao
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Meng Ma
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Peng Wang
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Baibai Gao
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Fuguang Li
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Zhaoen Yang
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
- Henan Institute of Grain and Cotton ResearchZhengzhouChina
| |
Collapse
|
47
|
Yamakawa H, Mizubayashi T, Kitazawa N, Yamanouchi U, Ando T, Mukai Y, Shimosaka E, Noda T, Asano K, Akai K, Katayama K. Polyploid QTL-seq identified QTLs controlling potato flesh color and tuber starch phosphorus content in a plexity-dependent manner. BREEDING SCIENCE 2024; 74:403-414. [PMID: 39897666 PMCID: PMC11780331 DOI: 10.1270/jsbbs.24028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 02/04/2025]
Abstract
The progenies of polyploid crops inherit multiple sets of homoeologous chromosomes through various combinations, which impedes the identification of the quantitative trait loci (QTL) governing agronomic traits and the implementation of DNA marker-assisted breeding. Previously, we developed a whole-genome sequencing-based polyploid QTL-seq method that utilizes comprehensively extracted simplex polymorphisms for QTL mapping. Here, we verified the detection of duplex QTLs by modifying the analytical settings to explore the QTLs governing tuber flesh color and starch phosphorus content using tetraploid potato (Solanum tuberosum L.). The F1 progenies were obtained from a cross between 'Touya' (TY) and 'Benimaru' (BM). A single TY-derived QTL responsible for yellow flesh color was identified around a β-carotene hydroxylase gene on chromosome 3 using simplex polymorphisms, and a BM-derived QTL associated with decreased starch phosphorus content near a starch synthase II gene on chromosome 2 was detected using duplex polymorphisms. Furthermore, linked DNA markers were developed at the QTL sites. For the latter QTL, plexity-distinguishable markers were developed using quantitative PCR, fragment analysis, and amplicon sequencing. These revealed the allele dosage-dependent effect of the reduced starch phosphorus content. Thus, the polyploid QTL-seq pipeline can explore versatile QTLs beyond simplex, facilitating DNA marker-assisted breeding in various polyploid crops.
Collapse
Affiliation(s)
- Hiromoto Yamakawa
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Tatsumi Mizubayashi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Noriyuki Kitazawa
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Utako Yamanouchi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Tsuyu Ando
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yoshiyuki Mukai
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Etsuo Shimosaka
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 9-4 Shinseiminami, Memuro, Kasai, Hokkaido 082-0081, Japan
| | - Takahiro Noda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 9-4 Shinseiminami, Memuro, Kasai, Hokkaido 082-0081, Japan
| | - Kenji Asano
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 9-4 Shinseiminami, Memuro, Kasai, Hokkaido 082-0081, Japan
| | - Kotaro Akai
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 9-4 Shinseiminami, Memuro, Kasai, Hokkaido 082-0081, Japan
| | - Kenji Katayama
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 9-4 Shinseiminami, Memuro, Kasai, Hokkaido 082-0081, Japan
| |
Collapse
|
48
|
Qi Z, Meng X, Xu M, Du Y, Yu J, Song T, Pan X, Zhang R, Cao H, Yu M, Telebanco-Yanoria MJ, Lu G, Zhou B, Liu Y. A novel Pik allele confers extended resistance to rice blast. PLANT, CELL & ENVIRONMENT 2024; 47:4800-4814. [PMID: 39087779 DOI: 10.1111/pce.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
In the ongoing arms race between rice and Magnaporthe oryzae, the pathogen employs effectors to evade the immune response, while the host develops resistance genes to recognise these effectors and confer resistance. In this study, we identified a novel Pik allele, Pik-W25, from wild rice WR25 through bulked-segregant analysis, creating the Pik-W25 NIL (Near-isogenic Lines) named G9. Pik-W25 conferred resistance to isolates expressing AvrPik-C/D/E alleles. CRISPR-Cas9 editing was used to generate transgenic lines with a loss of function in Pik-W25-1 and Pik-W25-2, resulting in loss of resistance in G9 to isolates expressing the three alleles, confirming that Pik-W25-induced immunity required both Pik-W25-1 and Pik-W25-2. Yeast two-hybrid (Y2H) and split luciferase complementation assays showed interactions between Pik-W25-1 and the three alleles, while Pik-W25-2 could not interact with AvrPik-C, -D, and -E alleles with Y2H assay, indicating Pik-W25-1 acts as an adaptor and Pik-W25-2 transduces the signal to trigger resistance. The Pik-W25 NIL exhibited enhanced field resistance to leaf and panicle blast without significant changes in morphology or development compared to the parent variety CO39, suggesting its potential for resistance breeding. These findings advance our knowledge of rice blast resistance mechanisms and offer valuable resources for effective and sustainable control strategies.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiuli Meng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Ming Xu
- High-throughput Genotyping Shared Laboratory, Seed Administration Department of Jiangsu Province, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | | | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Bo Zhou
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
49
|
Natarajan P, Rathnagiri A, Rivera-Burgos LA, Lopez-Ortiz C, Tomason Y, Nimmakayala P, Sari N, Wehner TC, Levi A, Reddy UK. Exploring the genomic landscape of gummy stem blight resistance in watermelon through QTL-Seq. BMC PLANT BIOLOGY 2024; 24:1129. [PMID: 39592947 PMCID: PMC11600796 DOI: 10.1186/s12870-024-05839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Watermelon is a nutritionally and economically significant crop in the US and globally. Gummy Stem Blight (GSB), caused by three cryptic Stagonosporopsis species, is one of the most devastating diseases affecting watermelon in the US, impacting most of the plant's above-ground parts. This study aimed to identify key Quantitative Trait Variants (QTVs) that include SNPs and In/Dels associated with GSB resistance in selfed derivatives of advanced multicross interspecific derivatives population derived from intercrosses between the most resistant lines of Citrullus amarus and highly susceptible cultivars of Citrullus lanatus. RESULTS Resistant and susceptible bulks were created by combining equimolar DNA concentrations from 30 extremely resistant derivatives and 30 extremely susceptible lines. These bulks underwent whole-genome sequencing, generating over 1 billion reads per bulk to achieve comprehensive genome coverage. The mapping percentage of the bulks to the parental genomes ranged from 92 to 99%. More than 6 million SNPs and 1 million indels were identified from the resistant parental genome, compared to fewer than 2 million SNPs and 0.4 million indels from the susceptible parental genome. QTNs associated with GSB resistance were identified using single-nucleotide polymorphism-index and Gprime methods. Statistically significant variants/loci linked to GSB resistance were found on chromosomes 1, 2, 3, 5, 7, 10, and 11. Notably, the genes Lipase class 3 family protein, Ribosome hibernation promotion factor (CaU02G00010), Ubiquitin-like-specific protease 1D (CaU03G04260), and Zinc finger CCCH domain-containing 15 (CaU03G10970) harbored the highest delta SNPs. Several previously published genes, including Avr9/Cf-9 Rapidly Elicited Protein (CaU07G12990) on chromosome 7, were also identified. CONCLUSIONS Identifying significant loci associated with GSB resistance has facilitated the development of PACE assays, which will aid in breeding GSB-resistant watermelon cultivars. These findings provide critical insights into the genetic basis of GSB resistance and represent a significant step towards improving the resilience of watermelon crops against this devastating disease.
Collapse
Affiliation(s)
- Purushothaman Natarajan
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV, USA.
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA.
| | - Akilan Rathnagiri
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV, USA
| | - Luis A Rivera-Burgos
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV, USA
| | - Yan Tomason
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV, USA
| | - Padma Nimmakayala
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV, USA.
| | - Nebahat Sari
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Todd C Wehner
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Amnon Levi
- Vegetable Laboratory, USDA-ARS, Charleston, SC, USA
| | - Umesh K Reddy
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV, USA.
| |
Collapse
|
50
|
Srichan M, Laosatit K, Lin Y, Yuan X, Chen X, Somta P. QTL-seq and QTL mapping identify a new locus for Cercospora leaf spot (Cercospora canescens) resistance in mungbean (Vigna radiata) and a cluster of Receptor-like protein 12 (RLP12) genes as candidate genes for the resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:278. [PMID: 39601832 DOI: 10.1007/s00122-024-04782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
KEY MESSAGE QTL-seq, linkage mapping, and whole-genome resequencing revealed a new locus (qCLS5.1) controlling Cercospora canescens resistance in mungbean and Receptor-like protein 12 (RLP12) genes as candidate genes for the resistance. Cercospora leaf spot (CLS) disease, caused by Cercospora canescens, is a common disease of mungbean (Vigna radiata). In this study, the genetics of CLS resistance was investigated in a new source of resistance (accession V2817) and the resistance was finely mapped to identify candidate genes. F2 and F2:3 populations of the cross V1197 (susceptible) × V2718 and a BC1F1 population of the cross V1197 × (V1197 × V2817) were used in this study. Segregation analysis suggested that the resistance is controlled by a single dominant gene. QTL-seq using F2 individuals revealed that a single QTL (designated qCLS5.1) on chromosome 5 controlled the resistance. The qCLS5.1 was confirmed in the F2:3 and BC1F1 populations by QTL analysis. Fine mapping using 978 F2 individuals localized qCLS5.1 to a 48.94 Kb region containing three tandemly duplicated Receptor-like protein 12 (RLP12) genes. Whole-genome resequencing and alignment of V1197 and V2817 revealed polymorphisms causing amino acid changes and premature stop codons in the three RLP12 genes. Collectively, these results show that qCLS5.1 is a new locus for CLS resistance in mungbean, and a cluster of RLP12 genes are candidate genes for the resistance. The new locus qCLS5.1 will be useful for molecular breeding of durable CLS-resistant mungbean cultivars.
Collapse
Affiliation(s)
- Makawan Srichan
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
- Tropical Vegetable Research Center, Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|