1
|
Yang X, Li G, Shi J, Wilkinson LG, Aubert MK, Houston K, Shirley NJ, Gao H, Lister R, Colombo L, Tucker MR. MADS31 supports female germline development by repressing the post-fertilization programme in cereal ovules. NATURE PLANTS 2025; 11:543-560. [PMID: 40000812 PMCID: PMC11928321 DOI: 10.1038/s41477-025-01915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/13/2025] [Indexed: 02/27/2025]
Abstract
The female germline of flowering plants develops within a niche of sporophytic (somatic) ovule cells, also referred to as the nucellus. How niche cells maintain their own somatic developmental programme, yet support the development of adjoining germline cells, remains largely unknown. Here we report that MADS31, a conserved MADS-box transcription factor from the B-sister subclass, is a potent regulator of niche cell identity. In barley, MADS31 is preferentially expressed in nucellar cells directly adjoining the germline, and loss-of-function mads31 mutants exhibit deformed and disorganized nucellar cells, leading to impaired germline development and partial female sterility. Remarkably similar phenotypes are observed in mads31 mutants in wheat, suggesting functional conservation within the Triticeae tribe. Molecular assays indicate that MADS31 encodes a potent transcriptional repressor, targeting genes in the ovule that are normally active in the seed. One prominent target of MADS31 is NRPD4b, a seed-expressed component of RNA polymerase IV/V that is involved in epigenetic regulation. NRPD4b is directly repressed by MADS31 in vivo and is derepressed in mads31 ovules, while overexpression of NRPD4b recapitulates the mads31 ovule phenotype. Thus, repression of NRPD4b by MADS31 is required to maintain ovule niche functionality. Our findings reveal a new mechanism by which somatic ovule tissues maintain their identity and support germline development before transitioning to the post-fertilization programme.
Collapse
Affiliation(s)
- Xiujuan Yang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia
| | - Gang Li
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jin Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Laura G Wilkinson
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia
| | - Matthew K Aubert
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia
- Australian Grain Technologies, Northam, Western Australia, Australia
| | - Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Neil J Shirley
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia
| | - Hengbin Gao
- The Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Ryan Lister
- The Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Lucia Colombo
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia.
- ARC Centre of Excellence in Plants for Space, The University of Adelaide, Urrbrae, South Australia, Australia.
- ARC Training Centre for Future Crops Development, The University of Adelaide, Urrbrae, South Australia, Australia.
| |
Collapse
|
2
|
Kuijer HNJ, Shirley NJ, Khor SF, Shi J, Schwerdt J, Zhang D, Li G, Burton RA. Transcript Profiling of MIKCc MADS-Box Genes Reveals Conserved and Novel Roles in Barley Inflorescence Development. FRONTIERS IN PLANT SCIENCE 2021; 12:705286. [PMID: 34539699 PMCID: PMC8442994 DOI: 10.3389/fpls.2021.705286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/04/2021] [Indexed: 05/26/2023]
Abstract
MADS-box genes have a wide range of functions in plant reproductive development and grain production. The ABCDE model of floral organ development shows that MADS-box genes are central players in these events in dicotyledonous plants but the applicability of this model remains largely unknown in many grass crops. Here, we show that transcript analysis of all MIKCc MADS-box genes through barley (Hordeum vulgare L.) inflorescence development reveals co-expression groups that can be linked to developmental events. Thirty-four MIKCc MADS-box genes were identified in the barley genome and single-nucleotide polymorphism (SNP) scanning of 22,626 barley varieties revealed that the natural variation in the coding regions of these genes is low and the sequences have been extremely conserved during barley domestication. More detailed transcript analysis showed that MADS-box genes are generally expressed at key inflorescence developmental phases and across various floral organs in barley, as predicted by the ABCDE model. However, expression patterns of some MADS genes, for example HvMADS58 (AGAMOUS subfamily) and HvMADS34 (SEPALLATA subfamily), clearly deviate from predicted patterns. This places them outside the scope of the classical ABCDE model of floral development and demonstrates that the central tenet of antagonism between A- and C-class gene expression in the ABC model of other plants does not occur in barley. Co-expression across three correlation sets showed that specifically grouped members of the barley MIKCc MADS-box genes are likely to be involved in developmental events driving inflorescence meristem initiation, floral meristem identity and floral organ determination. Based on these observations, we propose a potential floral ABCDE working model in barley, where the classic model is generally upheld, but that also provides new insights into the role of MIKCc MADS-box genes in the developing barley inflorescence.
Collapse
Affiliation(s)
- Hendrik N. J. Kuijer
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Neil J. Shirley
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Shi F. Khor
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Julian Schwerdt
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Dabing Zhang
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Li
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Rachel A. Burton
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
3
|
Meyer RC, Weigelt-Fischer K, Knoch D, Heuermann M, Zhao Y, Altmann T. Temporal dynamics of QTL effects on vegetative growth in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:476-490. [PMID: 33080013 DOI: 10.1093/jxb/eraa490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
We assessed early vegetative growth in a population of 382 accessions of Arabidopsis thaliana using automated non-invasive high-throughput phenotyping. All accessions were imaged daily from 7 d to 18 d after sowing in three independent experiments and genotyped using the Affymetrix 250k SNP array. Projected leaf area (PLA) was derived from image analysis and used to calculate relative growth rates (RGRs). In addition, initial seed size was determined. The generated datasets were used jointly for a genome-wide association study that identified 238 marker-trait associations (MTAs) individually explaining up to 8% of the total phenotypic variation. Co-localization of MTAs occurred at 33 genomic positions. At 21 of these positions, sequential co-localization of MTAs for 2-9 consecutive days was observed. The detected MTAs for PLA and RGR could be grouped according to their temporal expression patterns, emphasizing that temporal variation of MTA action can be observed even during the vegetative growth phase, a period of continuous formation and enlargement of seemingly similar rosette leaves. This indicates that causal genes may be differentially expressed in successive periods. Analyses of the temporal dynamics of biological processes are needed to gain important insight into the molecular mechanisms of growth-controlling processes in plants.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Marc Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, Research Group Quantitative Genetics, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| |
Collapse
|
4
|
Hu J, Chang X, Zhang Y, Yu X, Qin Y, Sun Y, Zhang L. The pineapple MADS-box gene family and the evolution of early monocot flower. Sci Rep 2021; 11:849. [PMID: 33441609 PMCID: PMC7806820 DOI: 10.1038/s41598-020-79163-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022] Open
Abstract
Unlike the flower of the model monocot rice, which has diverged greatly from the ancestral monocot flower, the pineapple (Ananas comosus) flower is more typical of monocot flowers. Here, we identified 43 pineapple genes containing MADS-box domains, including 11 type I and 32 type II genes. RNA-seq expression data generated from five pineapple floral organs (sepals, petals, stamens, pistils, and ovules) and quantitative real-time PCR revealed tissue-specific expression patterns for some genes. We found that AcAGL6 and AcFUL1 were mainly expressed in sepals and petals, suggesting their involvement in the regulation of these floral organs. A pineapple ‘ABCDE’ model was proposed based on the phylogenetic analysis and expression patterns of MADS-box genes. Unlike rice and orchid with frequent species-specific gene duplication and subsequent expression divergence, the composition and expression of the ABCDE genes were conserved in pineapple. We also found that AcSEP1/3, AcAG, AcAGL11a/b/c, and AcFUL1 were highly expressed at different stages of fruit development and have similar expression profiles, implicating these genes’ role in fruit development and ripening processes. We propose that the pineapple flower can be used as a model for studying the ancestral form of monocot flowers to investigate their development and evolutionary history.
Collapse
Affiliation(s)
- Juan Hu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaojun Chang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xianxian Yu
- School of Urban-Rural Planning and Landscape Architecture, Xuchang University, Xuchang, 461000, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yun Sun
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangsheng Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Orchid B sister gene PeMADS28 displays conserved function in ovule integument development. Sci Rep 2021; 11:1205. [PMID: 33441740 PMCID: PMC7806631 DOI: 10.1038/s41598-020-79877-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022] Open
Abstract
The ovules and egg cells are well developed to be fertilized at anthesis in many flowering plants. However, ovule development is triggered by pollination in most orchids. In this study, we characterized the function of a Bsister gene, named PeMADS28, isolated from Phalaenopsis equestris, the genome-sequenced orchid. Spatial and temporal expression analysis showed PeMADS28 predominantly expressed in ovules between 32 and 48 days after pollination, which synchronizes with integument development. Subcellular localization and protein–protein interaction analyses revealed that PeMADS28 could form a homodimer as well as heterodimers with D-class and E-class MADS-box proteins. In addition, ectopic expression of PeMADS28 in Arabidopsis thaliana induced small curled rosette leaves, short silique length and few seeds, similar to that with overexpression of other species’ Bsister genes in Arabidopsis. Furthermore, complementation test revealed that PeMADS28 could rescue the phenotype of the ABS/TT16 mutant. Together, these results indicate the conserved function of BsisterPeMADS28 associated with ovule integument development in orchid.
Collapse
|
6
|
Knoch D, Abbadi A, Grandke F, Meyer RC, Samans B, Werner CR, Snowdon RJ, Altmann T. Strong temporal dynamics of QTL action on plant growth progression revealed through high-throughput phenotyping in canola. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:68-82. [PMID: 31125482 PMCID: PMC6920335 DOI: 10.1111/pbi.13171] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 05/08/2023]
Abstract
A major challenge of plant biology is to unravel the genetic basis of complex traits. We took advantage of recent technical advances in high-throughput phenotyping in conjunction with genome-wide association studies to elucidate genotype-phenotype relationships at high temporal resolution. A diverse Brassica napus population from a commercial breeding programme was analysed by automated non-invasive phenotyping. Time-resolved data for early growth-related traits, including estimated biovolume, projected leaf area, early plant height and colour uniformity, were established and complemented by fresh and dry weight biomass. Genome-wide SNP array data provided the framework for genome-wide association analyses. Using time point data and relative growth rates, multiple robust main effect marker-trait associations for biomass and related traits were detected. Candidate genes involved in meristem development, cell wall modification and transcriptional regulation were detected. Our results demonstrate that early plant growth is a highly complex trait governed by several medium and many small effect loci, most of which act only during short phases. These observations highlight the importance of taking the temporal patterns of QTL/allele actions into account and emphasize the need for detailed time-resolved analyses to effectively unravel the complex and stage-specific contributions of genes affecting growth processes that operate at different developmental phases.
Collapse
Affiliation(s)
- Dominic Knoch
- Molecular Genetics/HeterosisLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Amine Abbadi
- Norddeutsche Pflanzenzucht Innovation GmbH (NPZi)HoltseeGermany
| | - Fabian Grandke
- Department of Plant BreedingResearch Centre for BiosystemsLand Use and Nutrition (iFZ)Justus‐Liebig‐University GiessenGiessenGermany
| | - Rhonda C. Meyer
- Molecular Genetics/HeterosisLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Birgit Samans
- Department of Plant BreedingResearch Centre for BiosystemsLand Use and Nutrition (iFZ)Justus‐Liebig‐University GiessenGiessenGermany
- Present address:
Technische Hochschule Mittelhessen (THM), University of Applied SciencesFachbereich Gesundheit35390GiessenGermany
| | - Christian R. Werner
- Department of Plant BreedingResearch Centre for BiosystemsLand Use and Nutrition (iFZ)Justus‐Liebig‐University GiessenGiessenGermany
- Present address:
The Roslin InstituteUniversity of EdinburghEaster Bush CampusMidlothianEH25 9RGUK
| | - Rod J. Snowdon
- Department of Plant BreedingResearch Centre for BiosystemsLand Use and Nutrition (iFZ)Justus‐Liebig‐University GiessenGiessenGermany
| | - Thomas Altmann
- Molecular Genetics/HeterosisLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| |
Collapse
|
7
|
Schilling S, Kennedy A, Pan S, Jermiin LS, Melzer R. Genome-wide analysis of MIKC-type MADS-box genes in wheat: pervasive duplications, functional conservation and putative neofunctionalization. THE NEW PHYTOLOGIST 2020; 225:511-529. [PMID: 31418861 DOI: 10.1111/nph.16122] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/06/2019] [Indexed: 05/21/2023]
Abstract
Wheat (Triticum aestivum) is one of the most important crops worldwide. Given a growing global population coupled with increasingly challenging cultivation conditions, facilitating wheat breeding by fine-tuning important traits is of great importance. MADS-box genes are prime candidates for this, as they are involved in virtually all aspects of plant development. Here, we present a detailed overview of phylogeny and expression of 201 wheat MIKC-type MADS-box genes. Homoeolog retention is significantly above the average genome-wide retention rate for wheat genes, indicating that many MIKC-type homoeologs are functionally important and not redundant. Gene expression is generally in agreement with the expected subfamily-specific expression pattern, indicating broad conservation of function of MIKC-type genes during wheat evolution. We also found extensive expansion of some MIKC-type subfamilies, especially those potentially involved in adaptation to different environmental conditions like flowering time genes. Duplications are especially prominent in distal telomeric regions. A number of MIKC-type genes show novel expression patterns and respond, for example, to biotic stress, pointing towards neofunctionalization. We speculate that conserved, duplicated and neofunctionalized MIKC-type genes may have played an important role in the adaptation of wheat to a diversity of conditions, hence contributing to the importance of wheat as a global staple food.
Collapse
Affiliation(s)
- Susanne Schilling
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Alice Kennedy
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Sirui Pan
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Lars S Jermiin
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Rainer Melzer
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Hoffmeier A, Gramzow L, Bhide AS, Kottenhagen N, Greifenstein A, Schubert O, Mummenhoff K, Becker A, Theißen G. A Dead Gene Walking: Convergent Degeneration of a Clade of MADS-Box Genes in Crucifers. Mol Biol Evol 2019; 35:2618-2638. [PMID: 30053121 DOI: 10.1093/molbev/msy142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genes are "born," and eventually they "die." These processes shape the phenotypic evolution of organisms and are hence of great biological interest. If genes die in plants, they generally do so quite rapidly. Here, we describe the fate of GOA-like genes that evolve in a dramatically different manner. GOA-like genes belong to the subfamily of Bsister genes of MIKC-type MADS-box genes. Typical MIKC-type genes encode conserved transcription factors controlling plant development. We show that ABS-like genes, a clade of Bsister genes, are indeed highly conserved in crucifers (Brassicaceae) maintaining the ancestral function of Bsister genes in ovule and seed development. In contrast, their closest paralogs, the GOA-like genes, have been undergoing convergent gene death in Brassicaceae. Intriguingly, erosion of GOA-like genes occurred after millions of years of coexistence with ABS-like genes. We thus describe Delayed Convergent Asymmetric Degeneration, a so far neglected but possibly frequent pattern of duplicate gene evolution that does not fit classical scenarios. Delayed Convergent Asymmetric Degeneration of GOA-like genes may have been initiated by a reduction in the expression of an ancestral GOA-like gene in the stem group of Brassicaceae and driven by dosage subfunctionalization. Our findings have profound implications for gene annotations in genomics, interpreting patterns of gene evolution and using genes in phylogeny reconstructions of species.
Collapse
Affiliation(s)
- Andrea Hoffmeier
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Lydia Gramzow
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Amey S Bhide
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Nina Kottenhagen
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Andreas Greifenstein
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Olesia Schubert
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Klaus Mummenhoff
- Department of Biology/Botany, University of Osnabrück, Osnabrück, Germany
| | - Annette Becker
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Günter Theißen
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
9
|
Ali Z, Raza Q, Atif RM, Aslam U, Ajmal M, Chung G. Genetic and Molecular Control of Floral Organ Identity in Cereals. Int J Mol Sci 2019; 20:E2743. [PMID: 31167420 PMCID: PMC6600504 DOI: 10.3390/ijms20112743] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Grasses represent a major family of monocots comprising mostly cereals. When compared to their eudicot counterparts, cereals show a remarkable morphological diversity. Understanding the molecular basis of floral organ identity and inflorescence development is crucial to gain insight into the grain development for yield improvement purposes in cereals, however, the exact genetic mechanism of floral organogenesis remains elusive due to their complex inflorescence architecture. Extensive molecular analyses of Arabidopsis and other plant genera and species have established the ABCDE floral organ identity model. According to this model, hierarchical combinatorial activities of A, B, C, D, and E classes of homeotic genes regulate the identity of different floral organs with partial conservation and partial diversification between eudicots and cereals. Here, we review the developmental role of A, B, C, D, and E gene classes and explore the recent advances in understanding the floral development and subsequent organ specification in major cereals with reference to model plants. Furthermore, we discuss the evolutionary relationships among known floral organ identity genes. This comparative overview of floral developmental genes and associated regulatory factors, within and between species, will provide a thorough understanding of underlying complex genetic and molecular control of flower development and floral organ identity, which can be helpful to devise innovative strategies for grain yield improvement in cereals.
Collapse
Affiliation(s)
- Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan 66000, Pakistan.
| | - Qasim Raza
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku 39020, Pakistan.
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Usman Aslam
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Ajmal
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea.
| |
Collapse
|
10
|
Callens C, Tucker MR, Zhang D, Wilson ZA. Dissecting the role of MADS-box genes in monocot floral development and diversity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2435-2459. [PMID: 29718461 DOI: 10.1093/jxb/ery086] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/16/2018] [Indexed: 05/05/2023]
Abstract
Many monocot plants have high social and economic value. These include grasses such as rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare), which produce soft commodities for many food and beverage industries, and ornamental flowers such ase lily (Lilium longiflorum) and orchid (Oncidium Gower Ramsey), which represent an important component of international flower markets. There is constant pressure to improve the development and diversity of these species, with a significant emphasis on flower development, and this is particularly relevant considering the impact of changing environments on reproduction and thus yield. MADS-box proteins are a family of transcription factors that contain a conserved 60 amino acid MADS-box motif. In plants, attention has been devoted to characterization of this family due to their roles in inflorescence and flower development, which holds promise for the modification of floral architecture for plant breeding. This has been explored in diverse angiosperms, but particularly the dicot model Arabidopsis thaliana. The focus of this review is on the less well characterized roles of the MADS-box proteins in monocot flower development and how changes in MADS-box proteins throughout evolution may have contributed to creating a diverse range of flowers. Examining these changes within the monocots can identify the importance of certain genes and pinpoint those which might be useful in future crop improvement and breeding strategies.
Collapse
Affiliation(s)
- Cindy Callens
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Dabing Zhang
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
11
|
Schilling S, Pan S, Kennedy A, Melzer R. MADS-box genes and crop domestication: the jack of all traits. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1447-1469. [PMID: 29474735 DOI: 10.1093/jxb/erx479] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/10/2018] [Indexed: 05/25/2023]
Abstract
MADS-box genes are key regulators of virtually every aspect of plant reproductive development. They play especially prominent roles in flowering time control, inflorescence architecture, floral organ identity determination, and seed development. The developmental and evolutionary importance of MADS-box genes is widely acknowledged. However, their role during flowering plant domestication is less well recognized. Here, we provide an overview illustrating that MADS-box genes have been important targets of selection during crop domestication and improvement. Numerous examples from a diversity of crop plants show that various developmental processes have been shaped by allelic variations in MADS-box genes. We propose that new genomic and genome editing resources provide an excellent starting point for further harnessing the potential of MADS-box genes to improve a variety of reproductive traits in crops. We also suggest that the biophysics of MADS-domain protein-protein and protein-DNA interactions, which is becoming increasingly well characterized, makes them especially suited to exploit coding sequence variations for targeted breeding approaches.
Collapse
Affiliation(s)
- Susanne Schilling
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Sirui Pan
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Alice Kennedy
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Irel
| |
Collapse
|
12
|
Tschiersch H, Junker A, Meyer RC, Altmann T. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. PLANT METHODS 2017; 13:54. [PMID: 28690669 PMCID: PMC5496596 DOI: 10.1186/s13007-017-0204-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/30/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Automated plant phenotyping has been established as a powerful new tool in studying plant growth, development and response to various types of biotic or abiotic stressors. Respective facilities mainly apply non-invasive imaging based methods, which enable the continuous quantification of the dynamics of plant growth and physiology during developmental progression. However, especially for plants of larger size, integrative, automated and high throughput measurements of complex physiological parameters such as photosystem II efficiency determined through kinetic chlorophyll fluorescence analysis remain a challenge. RESULTS We present the technical installations and the establishment of experimental procedures that allow the integrated high throughput imaging of all commonly determined PSII parameters for small and large plants using kinetic chlorophyll fluorescence imaging systems (FluorCam, PSI) integrated into automated phenotyping facilities (Scanalyzer, LemnaTec). Besides determination of the maximum PSII efficiency, we focused on implementation of high throughput amenable protocols recording PSII operating efficiency (ΦPSII). Using the presented setup, this parameter is shown to be reproducibly measured in differently sized plants despite the corresponding variation in distance between plants and light source that caused small differences in incident light intensity. Values of ΦPSII obtained with the automated chlorophyll fluorescence imaging setup correlated very well with conventionally determined data using a spot-measuring chlorophyll fluorometer. The established high throughput operating protocols enable the screening of up to 1080 small and 184 large plants per hour, respectively. The application of the implemented high throughput protocols is demonstrated in screening experiments performed with large Arabidopsis and maize populations assessing natural variation in PSII efficiency. CONCLUSIONS The incorporation of imaging systems suitable for kinetic chlorophyll fluorescence analysis leads to a substantial extension of the feature spectrum to be assessed in the presented high throughput automated plant phenotyping platforms, thus enabling the simultaneous assessment of plant architectural and biomass-related traits and their relations to physiological features such as PSII operating efficiency. The implemented high throughput protocols are applicable to a broad spectrum of model and crop plants of different sizes (up to 1.80 m height) and architectures. The deeper understanding of the relation of plant architecture, biomass formation and photosynthetic efficiency has a great potential with respect to crop and yield improvement strategies.
Collapse
Affiliation(s)
- Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, OT Gatersleben, Germany
| | - Astrid Junker
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, OT Gatersleben, Germany
| | - Rhonda C. Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, OT Gatersleben, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, OT Gatersleben, Germany
| |
Collapse
|
13
|
Wu F, Shi X, Lin X, Liu Y, Chong K, Theißen G, Meng Z. The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:310-324. [PMID: 27689766 DOI: 10.1111/tpj.13386] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 05/26/2023]
Abstract
The well-known ABC model describes the combinatorial interaction of homeotic genes in specifying floral organ identities. While the B- and C-functions are highly conserved throughout flowering plants and even in gymnosperms, the A-function, which specifies the identity of perianth organs (sepals and petals in eudicots), remains controversial. One reason for this is that in most plants that have been investigated thus far, with Arabidopsis being a remarkable exception, one does not find recessive mutants in which the identity of both types of perianth organs is affected. Here we report a comprehensive mutational analysis of all four members of the AP1/FUL-like subfamily of MADS-box genes in rice (Oryza sativa). We demonstrate that OsMADS14 and OsMADS15, in addition to their function of specifying meristem identity, are also required to specify palea and lodicule identities. Because these two grass-specific organs are very likely homologous to sepals and petals of eudicots, respectively, we conclude that there is a floral homeotic (A)-function in rice as defined previously. Together with other recent findings, our data suggest that AP1/FUL-like genes were independently recruited to fulfil the (A)-function in grasses and some eudicots, even though other scenarios cannot be excluded and are discussed.
Collapse
Affiliation(s)
- Feng Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaowei Shi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xuelei Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|